Single-Beam Vector Atomic Magnetometer with High Dynamic Range Based on Magnetic Field Modulation

IF 4.4 Q1 OPTICS
Junlin Chen, Liwei Jiang, Xin Zhao, Jiali Liu, Yanchao Chai, Mengnan Tian, Zhenglong Lu
{"title":"Single-Beam Vector Atomic Magnetometer with High Dynamic Range Based on Magnetic Field Modulation","authors":"Junlin Chen,&nbsp;Liwei Jiang,&nbsp;Xin Zhao,&nbsp;Jiali Liu,&nbsp;Yanchao Chai,&nbsp;Mengnan Tian,&nbsp;Zhenglong Lu","doi":"10.1002/qute.202400289","DOIUrl":null,"url":null,"abstract":"<p>In geophysical exploration and similar applications, magnetometers need to capture the complete magnetic field information, including both the magnitude and direction. Despite recent advancements in vector atomic magnetometers, they often face issues that hinder practical use. To overcome this, a high dynamic range single-beam vector atomic magnetometer based on the nonlinear magneto-optical rotation (NMOR) effect is proposed, utilizing a closed-loop system with applied three-axis modulation magnetic fields. In this method, closed-loop measurement is achieved using a phase-locked loop (PLL), with the frequencies of the applied modulation magnetic fields being significantly higher than the response bandwidth of the PLL. This allows directional information to be extracted from the modulation fields response signal and magnitude information from the PLL-locked frequency. A theoretical analysis of the proposed method is conducted by establishing an NMOR atomic magnetometer model under arbitrary magnetic field directions and deriving the method for obtaining the magnetic field direction. In further experimental validation, it is demonstrated that the vector atomic magnetometer can achieve measurement of three-axis vector magnetic fields, with a sensitivity of approximately <span></span><math>\n <semantics>\n <mrow>\n <mn>500</mn>\n <mspace></mspace>\n <mi>fT</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mi>Hz</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$500\\nobreakspace \\mathrm{fT (\\sqrt {Hz})^{-1}}$</annotation>\n </semantics></math> for magnetic field magnitude, <span></span><math>\n <semantics>\n <mrow>\n <mn>0.29</mn>\n <mspace></mspace>\n <mi>mrad</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mi>Hz</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$0.29\\nobreakspace \\mathrm{mrad (\\sqrt {Hz})^{-1}}$</annotation>\n </semantics></math> for inclination angle, and <span></span><math>\n <semantics>\n <mrow>\n <mn>0.94</mn>\n <mspace></mspace>\n <mi>mrad</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mi>Hz</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$0.94\\nobreakspace \\mathrm{mrad (\\sqrt {Hz})^{-1}}$</annotation>\n </semantics></math> for azimuth angle.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In geophysical exploration and similar applications, magnetometers need to capture the complete magnetic field information, including both the magnitude and direction. Despite recent advancements in vector atomic magnetometers, they often face issues that hinder practical use. To overcome this, a high dynamic range single-beam vector atomic magnetometer based on the nonlinear magneto-optical rotation (NMOR) effect is proposed, utilizing a closed-loop system with applied three-axis modulation magnetic fields. In this method, closed-loop measurement is achieved using a phase-locked loop (PLL), with the frequencies of the applied modulation magnetic fields being significantly higher than the response bandwidth of the PLL. This allows directional information to be extracted from the modulation fields response signal and magnitude information from the PLL-locked frequency. A theoretical analysis of the proposed method is conducted by establishing an NMOR atomic magnetometer model under arbitrary magnetic field directions and deriving the method for obtaining the magnetic field direction. In further experimental validation, it is demonstrated that the vector atomic magnetometer can achieve measurement of three-axis vector magnetic fields, with a sensitivity of approximately 500 fT ( Hz ) 1 $500\nobreakspace \mathrm{fT (\sqrt {Hz})^{-1}}$ for magnetic field magnitude, 0.29 mrad ( Hz ) 1 $0.29\nobreakspace \mathrm{mrad (\sqrt {Hz})^{-1}}$ for inclination angle, and 0.94 mrad ( Hz ) 1 $0.94\nobreakspace \mathrm{mrad (\sqrt {Hz})^{-1}}$ for azimuth angle.

Abstract Image

基于磁场调制的高动态范围单光束矢量原子磁力计
在地球物理勘探和类似应用中,磁强计需要捕捉完整的磁场信息,包括大小和方向。尽管矢量原子磁强计最近取得了进步,但它们经常面临一些问题,阻碍了实际应用。为了克服这一问题,我们提出了一种基于非线性磁光旋转(NMOR)效应的高动态范围单光束矢量原子磁强计,利用一个应用三轴调制磁场的闭环系统。在这种方法中,闭环测量是通过锁相环(PLL)实现的,外加调制磁场的频率明显高于锁相环的响应带宽。这样就可以从调制磁场响应信号中提取方向信息,并从 PLL 锁定频率中提取幅值信息。通过建立任意磁场方向下的 NMOR 原子磁力计模型,并推导出获取磁场方向的方法,对提出的方法进行了理论分析。在进一步的实验验证中,证明了矢量原子磁强计可实现三轴矢量磁场测量,对磁场幅值、倾角和方位角的灵敏度近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信