Error-Heralded and Deterministic Interconversion Between W State and Greenberger–Horne–Zeilinger State with Faithful Quantum Gates in Decoherence-Free-Subspace
{"title":"Error-Heralded and Deterministic Interconversion Between W State and Greenberger–Horne–Zeilinger State with Faithful Quantum Gates in Decoherence-Free-Subspace","authors":"Fang-Fang Du, Ming Ma, Qiu-lin Tan","doi":"10.1002/qute.202400322","DOIUrl":null,"url":null,"abstract":"<p>The interconversion of a variety of entangled states can facilitate the information transmission and decline the risk of error rates. Here two faithful protocols to achieve deterministic interconversion between three-logic-qubit W state and three-logic-qubit Greenberger–Horne–Zeilinger state in decoherence-free subspace (DFS), resorting to the state-selective property of the quantum dot (QD)-cavity systems and robust-fidelity quantum control gates are presented. Moreover, the single-photon detectors introduced can effectively herald and mitigate potential failures from imperfect interaction between the QD-cavity system and photons, significantly enhancing experimental feasibility. Through comprehensive analysis and evaluation, the protocols demonstrate exceptional conversion efficiencies and deliver near-perfect fidelities. Additionally, the DFS makes system coherence over extended periods to overcome the decoherence effect caused by specific environmental noise, paving the way for quantum information processing.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The interconversion of a variety of entangled states can facilitate the information transmission and decline the risk of error rates. Here two faithful protocols to achieve deterministic interconversion between three-logic-qubit W state and three-logic-qubit Greenberger–Horne–Zeilinger state in decoherence-free subspace (DFS), resorting to the state-selective property of the quantum dot (QD)-cavity systems and robust-fidelity quantum control gates are presented. Moreover, the single-photon detectors introduced can effectively herald and mitigate potential failures from imperfect interaction between the QD-cavity system and photons, significantly enhancing experimental feasibility. Through comprehensive analysis and evaluation, the protocols demonstrate exceptional conversion efficiencies and deliver near-perfect fidelities. Additionally, the DFS makes system coherence over extended periods to overcome the decoherence effect caused by specific environmental noise, paving the way for quantum information processing.