Purity-Assisted Zero-Noise Extrapolation for Quantum Error Mitigation

IF 4.4 Q1 OPTICS
Tian-Ren Jin, Yun-Hao Shi, Zheng-An Wang, Tian-Ming Li, Kai Xu, Heng Fan
{"title":"Purity-Assisted Zero-Noise Extrapolation for Quantum Error Mitigation","authors":"Tian-Ren Jin,&nbsp;Yun-Hao Shi,&nbsp;Zheng-An Wang,&nbsp;Tian-Ming Li,&nbsp;Kai Xu,&nbsp;Heng Fan","doi":"10.1002/qute.202400150","DOIUrl":null,"url":null,"abstract":"<p>Quantum error mitigation aims to reduce errors in quantum systems and improve accuracy. Zero-noise extrapolation (ZNE) is a commonly used method, where noise is amplified, and the target expectation is extrapolated to a noise-free point. However, ZNE relies on assumptions about error rates based on the error model. In this study, a purity-assisted zero-noise extrapolation (pZNE) method is utilized to address limitations in error rate assumptions and enhance the extrapolation process. The pZNE is based on the Pauli diagonal error model implemented using the Pauli twirling technique. Although this method does not significantly reduce the bias of routine ZNE, it extends its effectiveness to a wider range of error rates where routine ZNE may face limitations. In addition, the practicality of the pZNE method is verified through numerical simulations and experiments on the online quantum computation platform, <i>Quafu</i>. Comparisons with routine ZNE and virtual distillation methods show that biases in extrapolation methods increase with error rates and may become divergent at high error rates. The bias of pZNE is slightly lower than routine ZNE, while its error rate threshold surpasses that of routine ZNE. Furthermore, for full density matrix information, the pZNE method is more efficient than the routine ZNE.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum error mitigation aims to reduce errors in quantum systems and improve accuracy. Zero-noise extrapolation (ZNE) is a commonly used method, where noise is amplified, and the target expectation is extrapolated to a noise-free point. However, ZNE relies on assumptions about error rates based on the error model. In this study, a purity-assisted zero-noise extrapolation (pZNE) method is utilized to address limitations in error rate assumptions and enhance the extrapolation process. The pZNE is based on the Pauli diagonal error model implemented using the Pauli twirling technique. Although this method does not significantly reduce the bias of routine ZNE, it extends its effectiveness to a wider range of error rates where routine ZNE may face limitations. In addition, the practicality of the pZNE method is verified through numerical simulations and experiments on the online quantum computation platform, Quafu. Comparisons with routine ZNE and virtual distillation methods show that biases in extrapolation methods increase with error rates and may become divergent at high error rates. The bias of pZNE is slightly lower than routine ZNE, while its error rate threshold surpasses that of routine ZNE. Furthermore, for full density matrix information, the pZNE method is more efficient than the routine ZNE.

Abstract Image

纯度辅助零噪声外推法用于量子误差缓解
量子误差缓解旨在减少量子系统中的误差并提高精确度。零噪声外推法(ZNE)是一种常用的方法,即放大噪声,将目标期望值外推至无噪声点。然而,ZNE 依赖于基于误差模型的误差率假设。本研究利用纯度辅助零噪声外推法(pZNE)来解决误差率假设的局限性,并增强外推法的过程。pZNE 基于保利对角误差模型,使用保利旋转技术实现。虽然这种方法并不能显著减少常规 ZNE 的偏差,但却能将其有效性扩展到常规 ZNE 可能面临限制的更大误差率范围。此外,通过在线量子计算平台 Quafu 上的数值模拟和实验,验证了 pZNE 方法的实用性。与常规 ZNE 和虚拟蒸馏方法的比较表明,外推法的偏差会随着误差率的增加而增加,在误差率较高时可能会出现偏差。pZNE 的偏差略低于常规 ZNE,而其误差率阈值超过了常规 ZNE。此外,对于全密度矩阵信息,pZNE 方法比常规 ZNE 更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信