Spin- s $s$ Dicke States and Their Preparation

IF 4.4 Q1 OPTICS
Rafael I. Nepomechie, Francesco Ravanini, David Raveh
{"title":"Spin-\n \n s\n $s$\n Dicke States and Their Preparation","authors":"Rafael I. Nepomechie,&nbsp;Francesco Ravanini,&nbsp;David Raveh","doi":"10.1002/qute.202400057","DOIUrl":null,"url":null,"abstract":"<p>The notion of <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>u</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$su(2)$</annotation>\n </semantics></math> spin-<span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math> Dicke states is introduced, which are higher-spin generalizations of usual (spin-1/2) Dicke states. These multi-qudit states can be expressed as superpositions of <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>u</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mi>s</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$su(2s+1)$</annotation>\n </semantics></math> qudit Dicke states. They satisfy a recursion formula, which is used to formulate an efficient quantum circuit for their preparation, whose size scales as <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>k</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mi>s</mi>\n <mi>n</mi>\n <mo>−</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$sk(2sn-k)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> is the number of qudits and <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is the number of times the total spin-lowering operator is applied to the highest-weight state. The algorithm is deterministic and does not require ancillary qudits.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The notion of s u ( 2 ) $su(2)$ spin- s $s$ Dicke states is introduced, which are higher-spin generalizations of usual (spin-1/2) Dicke states. These multi-qudit states can be expressed as superpositions of s u ( 2 s + 1 ) $su(2s+1)$ qudit Dicke states. They satisfy a recursion formula, which is used to formulate an efficient quantum circuit for their preparation, whose size scales as s k ( 2 s n k ) $sk(2sn-k)$ , where n $n$ is the number of qudits and k $k$ is the number of times the total spin-lowering operator is applied to the highest-weight state. The algorithm is deterministic and does not require ancillary qudits.

Abstract Image

自旋$s$迪克态及其制备方法
我们引入了自旋狄克态的概念,它是通常(自旋-1/2)狄克态的高自旋概括。这些多量子态可以用量子戴克态的叠加来表示。它们满足一个递归公式,该公式用于制定制备它们的高效量子电路,其规模为 ,其中 , 是量子位的数量, 是对最高权重态应用总自旋降低算子的次数。该算法是确定性的,不需要辅助量子点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信