{"title":"Kalman-SSM: Modeling Long-Term Time Series With Kalman Filter Structured State Spaces","authors":"Zheng Zhou;Xu Guo;Yu-Jie Xiong;Chun-Ming Xia","doi":"10.1109/LSP.2024.3457862","DOIUrl":null,"url":null,"abstract":"In the field of time series forecasting, time series are often considered as linear time-varying systems, which facilitates the analysis and modeling of time series from a structural state perspective. Due to the non-stationary nature and noise interference in real-world data, existing models struggle to predict long-term time series effectively. To address this issue, we propose a novel model that integrates the Kalman filter with a state space model (SSM) approach to enhance the accuracy of long-term time series forecasting. The Kalman filter requires recursive computation, whereas the SSM approach reformulates the Kalman filtering process into a convolutional form, simplifying training and enhancing model efficiency. Our Kalman-SSM model estimates the future state of dynamic systems for forecasting by utilizing a series of time series data containing noise. In real-world datasets, the Kalman-SSM has demonstrated competitive performance and satisfactory efficiency in comparison to state-of-the-art (SOTA) models.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10674771/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of time series forecasting, time series are often considered as linear time-varying systems, which facilitates the analysis and modeling of time series from a structural state perspective. Due to the non-stationary nature and noise interference in real-world data, existing models struggle to predict long-term time series effectively. To address this issue, we propose a novel model that integrates the Kalman filter with a state space model (SSM) approach to enhance the accuracy of long-term time series forecasting. The Kalman filter requires recursive computation, whereas the SSM approach reformulates the Kalman filtering process into a convolutional form, simplifying training and enhancing model efficiency. Our Kalman-SSM model estimates the future state of dynamic systems for forecasting by utilizing a series of time series data containing noise. In real-world datasets, the Kalman-SSM has demonstrated competitive performance and satisfactory efficiency in comparison to state-of-the-art (SOTA) models.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.