{"title":"Distribution and drivers of co−hosts of antibiotic and metal(loid) resistance genes in the fresh−brackish−saline groundwater","authors":"","doi":"10.1016/j.chemosphere.2024.143332","DOIUrl":null,"url":null,"abstract":"<div><p>Groundwater is an essential source of drinking water and agricultural irrigation water, and its protection has become a global goal for public health. However, knowledge about heavy metal(loid) resistance genes (MRGs) in groundwater and the potential co−selection of antibiotic resistance genes (ARGs) have seldom been developed. Here, during the wet and dry seasons, we collected 66 groundwater samples (total dissolved solids = 93.9−9530 mg/L) adjacent to Baiyangdian Lake in Northern China, which presented the few metal(loid) and antibiotic contamination. We identified 160 MRGs whose composition exhibited significant seasonal variation, and dissolved metal(loid)s (particularly Ba) played a determinative role in promoting the MRGs proliferation though with relatively low concentrations, suggesting the relatively vulnerable groundwater ecosystems. Moreover, 27.4% of MRG−carrying metagenome−assembled genomes (MAGs) simultaneously carried ARGs, with the most frequently detected MRG types of Cu, Hg, and As, and ARG types of multidrug and bacitracin. Physicochemical variables, variables related to total dissolved solids, metal(loid)s, and antibiotics synthetically shaped the variation of MRG−ARG hosts in groundwater. We found that the increase of MRG−ARG hosts was critically responsible for the spread of MRGs and ARGs in groundwater. Our findings revealed the widespread co−occurrence of MRGs and ARGs in few−contaminated groundwater and highlighted the crucial roles of salinity in their propagation and transmission.</p></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524022306","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater is an essential source of drinking water and agricultural irrigation water, and its protection has become a global goal for public health. However, knowledge about heavy metal(loid) resistance genes (MRGs) in groundwater and the potential co−selection of antibiotic resistance genes (ARGs) have seldom been developed. Here, during the wet and dry seasons, we collected 66 groundwater samples (total dissolved solids = 93.9−9530 mg/L) adjacent to Baiyangdian Lake in Northern China, which presented the few metal(loid) and antibiotic contamination. We identified 160 MRGs whose composition exhibited significant seasonal variation, and dissolved metal(loid)s (particularly Ba) played a determinative role in promoting the MRGs proliferation though with relatively low concentrations, suggesting the relatively vulnerable groundwater ecosystems. Moreover, 27.4% of MRG−carrying metagenome−assembled genomes (MAGs) simultaneously carried ARGs, with the most frequently detected MRG types of Cu, Hg, and As, and ARG types of multidrug and bacitracin. Physicochemical variables, variables related to total dissolved solids, metal(loid)s, and antibiotics synthetically shaped the variation of MRG−ARG hosts in groundwater. We found that the increase of MRG−ARG hosts was critically responsible for the spread of MRGs and ARGs in groundwater. Our findings revealed the widespread co−occurrence of MRGs and ARGs in few−contaminated groundwater and highlighted the crucial roles of salinity in their propagation and transmission.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.