Thermodynamically induced crystal restructuring to make CsPbCl3 single crystal films for weak light detection

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiyan Pan, Tai An, Jie Sun, Hua Dong, Zhu Ma, Guangxing Liang, Yongbo Yuan, Yang Li, Wuqiang Wu, Yong Ding, Liming Ding
{"title":"Thermodynamically induced crystal restructuring to make CsPbCl3 single crystal films for weak light detection","authors":"Xiyan Pan, Tai An, Jie Sun, Hua Dong, Zhu Ma, Guangxing Liang, Yongbo Yuan, Yang Li, Wuqiang Wu, Yong Ding, Liming Ding","doi":"10.1007/s12274-024-6967-9","DOIUrl":null,"url":null,"abstract":"<p>CsPbCl<sub>3</sub> perovskite is considered a highly promising material for ultraviolet (UV) photodetectors due to its exceptional thermal stability and excellent short-wavelength light response. However, its high lattice energy and low polarizability result in extremely low solubility in conventional solvents, making the synthesis of CsPbCl<sub>3</sub> single crystals a significant challenge. In this study, we propose a novel thermodynamically induced crystal restructuring (TICR) process that can transform microcrystalline films (MCFs) into single crystal films (SCFs) within a short period. This method, for the first time, has successfully achieved the synthesis of centimeter-sized CsPbCl<sub>3</sub> SCFs and the mechanism has been explored in depth using <i>in-situ</i> techniques. Furthermore, we report the first instance of a CsPbCl<sub>3</sub> SCF UV photodiode, which exhibits a record-breaking on/off ratio of 3.32 × 10<sup>7</sup> and a detectivity of up to 1.15 × 10<sup>14</sup> Jones under 0 V bias. It demonstrates excellent response even under weak light conditions of 10 nW·cm<sup>−2</sup> and maintains outstanding stability with almost no performance degradation after 15 months. This study provides a novel approach for the synthesis of perovskite single crystals and holds significant potential for advancing the development of high-performance optoelectronic devices.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6967-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CsPbCl3 perovskite is considered a highly promising material for ultraviolet (UV) photodetectors due to its exceptional thermal stability and excellent short-wavelength light response. However, its high lattice energy and low polarizability result in extremely low solubility in conventional solvents, making the synthesis of CsPbCl3 single crystals a significant challenge. In this study, we propose a novel thermodynamically induced crystal restructuring (TICR) process that can transform microcrystalline films (MCFs) into single crystal films (SCFs) within a short period. This method, for the first time, has successfully achieved the synthesis of centimeter-sized CsPbCl3 SCFs and the mechanism has been explored in depth using in-situ techniques. Furthermore, we report the first instance of a CsPbCl3 SCF UV photodiode, which exhibits a record-breaking on/off ratio of 3.32 × 107 and a detectivity of up to 1.15 × 1014 Jones under 0 V bias. It demonstrates excellent response even under weak light conditions of 10 nW·cm−2 and maintains outstanding stability with almost no performance degradation after 15 months. This study provides a novel approach for the synthesis of perovskite single crystals and holds significant potential for advancing the development of high-performance optoelectronic devices.

Abstract Image

利用热力学诱导晶体重组制造用于弱光探测的 CsPbCl3 单晶薄膜
CsPbCl3 包晶因其卓越的热稳定性和出色的短波长光响应,被认为是一种极有前途的紫外线(UV)光电探测器材料。然而,它的高晶格能和低极化性导致其在传统溶剂中的溶解度极低,从而使 CsPbCl3 单晶的合成成为一项重大挑战。在本研究中,我们提出了一种新型热力学诱导晶体重组(TICR)工艺,可在短时间内将微晶薄膜(MCF)转化为单晶薄膜(SCF)。这种方法首次成功合成了厘米级的 CsPbCl3 SCFs,并利用原位技术对其机理进行了深入探讨。此外,我们还首次报告了 CsPbCl3 SCF 紫外光二极管的实例,该二极管在 0 V 偏置下的开/关比达到了破纪录的 3.32 × 107,探测率高达 1.15 × 1014 Jones。即使在 10 nW-cm-2 的弱光条件下,它也能表现出卓越的响应能力,并且在 15 个月后仍能保持出色的稳定性,几乎没有性能衰减。这项研究为合成包光体单晶体提供了一种新方法,为推动高性能光电器件的发展提供了巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信