Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mingyuan Pang, Min Yang, Haohao Zhang, Yuqing Shen, Zhen Kong, Jiajia Ye, Chaoyue Shan, Ying Wang, Juan An, Wensi Li, Xing Gao, Jibin Song
{"title":"Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions","authors":"Mingyuan Pang,&nbsp;Min Yang,&nbsp;Haohao Zhang,&nbsp;Yuqing Shen,&nbsp;Zhen Kong,&nbsp;Jiajia Ye,&nbsp;Chaoyue Shan,&nbsp;Ying Wang,&nbsp;Juan An,&nbsp;Wensi Li,&nbsp;Xing Gao,&nbsp;Jibin Song","doi":"10.1007/s12274-024-6923-8","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts are gaining increasing interest due to their high atom efficiency and effective catalytic performance compared to other catalyst types. While the optimal loading of catalytic sites in single-atom catalysts significantly influences their catalytic efficiency. However, creating stable single-atom catalysts with high-loading remains a difficult task. Therefore, we showcase and describe the latest developments in techniques for producing single-atom catalysts with high-loadings. In addition, the performance of noble metal, non-precious metal, and diatomic catalysts in ORR processes is summarized. What’s more, the key difficulties and opportunities in the sector are demonstrated by examining the synthesis techniques and evaluating the performance and structure. This review will help researchers to advance the research process of high-loading single-atom catalysts and accelerate their practical application in the field of ORR research.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9371 - 9396"},"PeriodicalIF":9.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6923-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of the oxygen reduction reaction (ORR) in fuel cells and zinc-air batteries is self-evident, and effective catalysts could significantly improve the catalytic efficiency of ORR. Single-atom catalysts are gaining increasing interest due to their high atom efficiency and effective catalytic performance compared to other catalyst types. While the optimal loading of catalytic sites in single-atom catalysts significantly influences their catalytic efficiency. However, creating stable single-atom catalysts with high-loading remains a difficult task. Therefore, we showcase and describe the latest developments in techniques for producing single-atom catalysts with high-loadings. In addition, the performance of noble metal, non-precious metal, and diatomic catalysts in ORR processes is summarized. What’s more, the key difficulties and opportunities in the sector are demonstrated by examining the synthesis techniques and evaluating the performance and structure. This review will help researchers to advance the research process of high-loading single-atom catalysts and accelerate their practical application in the field of ORR research.

Abstract Image

用于氧还原反应的高负荷单原子催化剂的合成技术、机理和前景
氧还原反应(ORR)在燃料电池和锌-空气电池中的重要性不言而喻,而有效的催化剂可以显著提高 ORR 的催化效率。与其他类型的催化剂相比,单原子催化剂具有高原子效率和有效的催化性能,因此越来越受到人们的关注。虽然单原子催化剂中催化位点的最佳负载量会极大地影响其催化效率。然而,创造稳定的高负载单原子催化剂仍然是一项艰巨的任务。因此,我们将展示和介绍生产高负荷单原子催化剂技术的最新进展。此外,我们还总结了贵金属、非贵金属和二原子催化剂在 ORR 过程中的性能。此外,还通过研究合成技术、评估性能和结构,展示了该领域的主要困难和机遇。这篇综述将有助于研究人员推进高负载单原子催化剂的研究进程,并加速其在 ORR 研究领域的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信