A Framework for Predicting the Impact of Game Balance Changes Through Meta Discovery

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Akash Saravanan;Matthew Guzdial
{"title":"A Framework for Predicting the Impact of Game Balance Changes Through Meta Discovery","authors":"Akash Saravanan;Matthew Guzdial","doi":"10.1109/TG.2024.3457822","DOIUrl":null,"url":null,"abstract":"A metagame is a collection of knowledge that goes beyond the rules of a game. In competitive, team-based games, such as \n<italic>Pokémon</i>\n or \n<italic>League of Legends</i>\n, it refers to the set of current dominant characters and/or strategies within the player base. Developer changes to the balance of the game can have drastic and unforeseen consequences on these sets of meta characters. A framework for predicting the impact of balance changes could aid developers in making more informed balance decisions. In this article, we present such a meta discovery framework, leveraging reinforcement learning for automated testing of balance changes. Our results demonstrate the ability to predict the outcome of balance changes in \n<italic>Pokémon Showdown</i>\n, a collection of competitive \n<italic>Pokémon</i>\n tiers, with high accuracy.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 4","pages":"821-830"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10675455/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A metagame is a collection of knowledge that goes beyond the rules of a game. In competitive, team-based games, such as Pokémon or League of Legends , it refers to the set of current dominant characters and/or strategies within the player base. Developer changes to the balance of the game can have drastic and unforeseen consequences on these sets of meta characters. A framework for predicting the impact of balance changes could aid developers in making more informed balance decisions. In this article, we present such a meta discovery framework, leveraging reinforcement learning for automated testing of balance changes. Our results demonstrate the ability to predict the outcome of balance changes in Pokémon Showdown , a collection of competitive Pokémon tiers, with high accuracy.
通过元发现预测游戏平衡变化影响的框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信