Reza Nasiri, Mohammad Reza Saffarian, Mojtaba Moravej
{"title":"Experimental investigation of a hemispherical solar collector performance with helical risers by using Ag–CuO/water hybrid nanofluid","authors":"Reza Nasiri, Mohammad Reza Saffarian, Mojtaba Moravej","doi":"10.1007/s10973-024-13595-6","DOIUrl":null,"url":null,"abstract":"<p>A stationary, symmetrical hemispherical solar collector with helical risers is experimentally investigated. Pure water and Ag-CuO/water hybrid nanofluid are used as the working fluid. The nanoparticle's volume fractions are 0.1 and 0.3%, and the flow rates of the working fluid are 1, 1.5, and 2 Lmin<sup>−1</sup>. A total of 9 tests have been conducted in 9 consecutive days during August 2022. All tests were performed according to ASHRAE standards. The main novelty of this study is the practical use of hybrid nanofluid and helical risers in a solar collector with hemispherical geometry. According to the results, a hemispherical solar collector exhibits hopeful and favorable thermal efficiency due to its particular shape and the unique arrangement of its helical risers. The results show that with the increase in flow rate, the temperature difference between the inlet and outlet of the hemispherical solar collector and the heat exchanger inside storage tank decreases, while the thermal performance of the solar collector increases. Also, when the concentration of nanoparticles increases, the temperature difference between the inlet and outlet of the collector, and the thermal efficiency, increases. The results show that the maximum thermal efficiency of the solar collector is 86.8% and the maximum average temperature of the fluid around the heat exchanger in the storage tank is 79.8 °C, and these results are related to the hybrid nanofluid with a volume fraction of 0.3% and a flow rate of 2 Lmin<sup>−1</sup>.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"61 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13595-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A stationary, symmetrical hemispherical solar collector with helical risers is experimentally investigated. Pure water and Ag-CuO/water hybrid nanofluid are used as the working fluid. The nanoparticle's volume fractions are 0.1 and 0.3%, and the flow rates of the working fluid are 1, 1.5, and 2 Lmin−1. A total of 9 tests have been conducted in 9 consecutive days during August 2022. All tests were performed according to ASHRAE standards. The main novelty of this study is the practical use of hybrid nanofluid and helical risers in a solar collector with hemispherical geometry. According to the results, a hemispherical solar collector exhibits hopeful and favorable thermal efficiency due to its particular shape and the unique arrangement of its helical risers. The results show that with the increase in flow rate, the temperature difference between the inlet and outlet of the hemispherical solar collector and the heat exchanger inside storage tank decreases, while the thermal performance of the solar collector increases. Also, when the concentration of nanoparticles increases, the temperature difference between the inlet and outlet of the collector, and the thermal efficiency, increases. The results show that the maximum thermal efficiency of the solar collector is 86.8% and the maximum average temperature of the fluid around the heat exchanger in the storage tank is 79.8 °C, and these results are related to the hybrid nanofluid with a volume fraction of 0.3% and a flow rate of 2 Lmin−1.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.