Super-Resolution Imaging in Collagen-Abundant Thick Tissues

Ya-Han Chuang, Yueh-Feng Wu, Ya-Hui Lin, Yin-Hsu Chen, Yu-Xian Zhou, Shao-Chun Hsu, Hsin-Mei Lee, Ann-Shyn Chiang, Yunching Chen, Shiang-Jiuun Chen, Sung-Jan Lin, Li-An Chu
{"title":"Super-Resolution Imaging in Collagen-Abundant Thick Tissues","authors":"Ya-Han Chuang, Yueh-Feng Wu, Ya-Hui Lin, Yin-Hsu Chen, Yu-Xian Zhou, Shao-Chun Hsu, Hsin-Mei Lee, Ann-Shyn Chiang, Yunching Chen, Shiang-Jiuun Chen, Sung-Jan Lin, Li-An Chu","doi":"10.1002/sstr.202400231","DOIUrl":null,"url":null,"abstract":"Expansion microscopy (ExM) has gained increasing popularity for 3D ultrastructural imaging of cultured cells and tissue slices at nanoscale resolution using conventional microscopes via physical expansion of biological tissues. However, its application to collagen-abundant thick tissues is still challenging. Herein, a new method, collagen ExM (ColExM), optimized for expanding tissues containing more than 70% collagen, is demonstrated. ColExM succeeds in 4.5-fold linear expansion with minimal structural distortion of corneal and skin tissues. It is compatible with immunostaining, allowing super-resolution visualization of 3D neural structures innervating hair follicles, corneas, and pancreatic tumors with high stromal collagen content. The method succeeds in identifying individual mitochondria and previously unrecognized dendritic spinelike structures of corneal nerves. It also enables fine mapping of structural rearrangement of tight junctions and actin cytoskeletons. Therefore, ColExM can facilitate the exploration of 3D nanoscale structures in collagen-rich tissues.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Expansion microscopy (ExM) has gained increasing popularity for 3D ultrastructural imaging of cultured cells and tissue slices at nanoscale resolution using conventional microscopes via physical expansion of biological tissues. However, its application to collagen-abundant thick tissues is still challenging. Herein, a new method, collagen ExM (ColExM), optimized for expanding tissues containing more than 70% collagen, is demonstrated. ColExM succeeds in 4.5-fold linear expansion with minimal structural distortion of corneal and skin tissues. It is compatible with immunostaining, allowing super-resolution visualization of 3D neural structures innervating hair follicles, corneas, and pancreatic tumors with high stromal collagen content. The method succeeds in identifying individual mitochondria and previously unrecognized dendritic spinelike structures of corneal nerves. It also enables fine mapping of structural rearrangement of tight junctions and actin cytoskeletons. Therefore, ColExM can facilitate the exploration of 3D nanoscale structures in collagen-rich tissues.

Abstract Image

胶原蛋白丰富的厚组织中的超分辨率成像
膨胀显微镜(ExM)通过对生物组织进行物理膨胀,利用传统显微镜对培养细胞和组织切片进行纳米级分辨率的三维超微结构成像,越来越受到人们的青睐。然而,将其应用于胶原蛋白丰富的厚组织仍具有挑战性。本文展示了一种新方法,即胶原蛋白 ExM(ColExM),它针对胶原蛋白含量超过 70% 的组织的膨胀进行了优化。ColExM 可成功实现 4.5 倍的线性扩张,且角膜和皮肤组织的结构变形极小。它与免疫染色兼容,可对支配毛囊、角膜和胰腺肿瘤等基质胶原含量高的三维神经结构进行超分辨率可视化。该方法能成功识别单个线粒体和以前未识别的角膜神经树枝状刺状结构。它还能精细绘制紧密连接和肌动蛋白细胞骨架的结构重排图。因此,ColExM 可以促进对富含胶原蛋白的组织中三维纳米级结构的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信