Elham Lori Zoudani, Nam-Trung Nguyen, Navid Kashaninejad
{"title":"Microneedle Optimization: Toward Enhancing Microneedle's Functionality and Breaking the Traditions","authors":"Elham Lori Zoudani, Nam-Trung Nguyen, Navid Kashaninejad","doi":"10.1002/sstr.202400121","DOIUrl":null,"url":null,"abstract":"Microneedles hold remarkable potential for providing convenient and unique solutions for disease diagnosis and therapy. However, their integration into clinical practices has been slow, primarily due to the challenge of developing models that meet the criteria of a particular application. A comprehensive and systematic analysis of all aspects of microneedle platforms is imperative to overcome this bottleneck. The analysis involves gathering performance-related information and understanding the factors affecting the functionality of microneedles. The performance of microneedles is heavily influenced by parameters such as dimensions, needle shape, array arrangement, and materials (flexible, stretchable, stimuli-responsive, biodegradable). This article presents a fresh perspective on microneedles, introducing concepts toward optimal designs across various microneedle platforms. This includes application, design, fabrication techniques, and understanding how a specific microneedle design can effectively meet the requirements of a particular application. By addressing these crucial issues, further advancement of microneedle technology occurs.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"297 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microneedles hold remarkable potential for providing convenient and unique solutions for disease diagnosis and therapy. However, their integration into clinical practices has been slow, primarily due to the challenge of developing models that meet the criteria of a particular application. A comprehensive and systematic analysis of all aspects of microneedle platforms is imperative to overcome this bottleneck. The analysis involves gathering performance-related information and understanding the factors affecting the functionality of microneedles. The performance of microneedles is heavily influenced by parameters such as dimensions, needle shape, array arrangement, and materials (flexible, stretchable, stimuli-responsive, biodegradable). This article presents a fresh perspective on microneedles, introducing concepts toward optimal designs across various microneedle platforms. This includes application, design, fabrication techniques, and understanding how a specific microneedle design can effectively meet the requirements of a particular application. By addressing these crucial issues, further advancement of microneedle technology occurs.