{"title":"Thermodynamic assessment of a solar water heater and treatment: an energy–exergy and sustainability analysis","authors":"Kriti Srivastava, Abhinav Anand Sinha, Tushar Choudhary, Himanshu Pachori, Aman Singh Rajpoot","doi":"10.1007/s10973-024-13606-6","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a thermodynamic and sustainability analysis for an experimentally developed solar water heater-with water treatment. The parabolic trough collector (PTC) is employed to capture thermal energy from the sun, which is subsequently utilized to increase the temperature of water. “Experimental and numerical” investigations are divided into two cases. Case 1: PTC with a glass cover and case 2: PTC without glass cover. Using an experimental analysis, data are collected, such as solar insolation and water outlet temperature. The collected data are utilized to analyse the thermodynamic performance of the proposed system. The first law of thermodynamics helps to quantify the system’s performance, called energy analysis, whereas the second law of thermodynamics provides qualitative performance, called exergy analysis. The maximum energy and exergy efficiency achieved by the proposed system are 69.5% and 6.15%, respectively. Simultaneously, an exergy-based sustainability analysis is proposed, which shows how effectively the fuel exergy is utilized with the proposed system. The maximum sustainability index for case 1 is 1.07, and for case 2, it is 1.08. At the end of the experimental investigation, a slight decrease in total dissolved solid (TDS) was detected, indicating that if we enhance the performance of the PTC system, by changing the reflector material and installing evacuated tubes, the quality of the water may improve.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"75 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13606-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a thermodynamic and sustainability analysis for an experimentally developed solar water heater-with water treatment. The parabolic trough collector (PTC) is employed to capture thermal energy from the sun, which is subsequently utilized to increase the temperature of water. “Experimental and numerical” investigations are divided into two cases. Case 1: PTC with a glass cover and case 2: PTC without glass cover. Using an experimental analysis, data are collected, such as solar insolation and water outlet temperature. The collected data are utilized to analyse the thermodynamic performance of the proposed system. The first law of thermodynamics helps to quantify the system’s performance, called energy analysis, whereas the second law of thermodynamics provides qualitative performance, called exergy analysis. The maximum energy and exergy efficiency achieved by the proposed system are 69.5% and 6.15%, respectively. Simultaneously, an exergy-based sustainability analysis is proposed, which shows how effectively the fuel exergy is utilized with the proposed system. The maximum sustainability index for case 1 is 1.07, and for case 2, it is 1.08. At the end of the experimental investigation, a slight decrease in total dissolved solid (TDS) was detected, indicating that if we enhance the performance of the PTC system, by changing the reflector material and installing evacuated tubes, the quality of the water may improve.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.