Derivation of appropriate temperature change for application of phase change materials in building walls for energy reduction in Korean climatic conditions
{"title":"Derivation of appropriate temperature change for application of phase change materials in building walls for energy reduction in Korean climatic conditions","authors":"Ki-Cheol Lee, Seonghyun Park, Chang-Young Park","doi":"10.1007/s10973-024-13466-0","DOIUrl":null,"url":null,"abstract":"<p>Studies are underway to apply phase change materials (PCMs) to buildings to reduce energy consumption. PCMs can be expected to achieve energy savings by exploiting their high latent heat capacity and time-lag phenomenon, slowing down the heat transfer within the structure, and accumulating and releasing latent heat. This study analyzed the appropriate melting point and energy-saving effects based on changes in external climate conditions, attachment location, and PCM properties (thickness and thermal conductivity) through building energy simulations. Climate data were quantitatively categorized into climate zones based on heating degree hours, cooling degree hours, and insolation, and a total of 14 climate zones were proposed. The appropriate melting point based on climate was evidently more effective for cooling than for heating, and external attachment was proved to be more advantageous. As the thickness increased, the appropriate melting point decreased, and the energy-saving effect remained effective. The thermal conductivity increased with the graphite content by 0.90–2.37%, and the appropriate melting point also changed by 0.72–0.91 °C. As the thermal conductivity increased, heat was rapidly transferred within the PCM, altering its energy-saving effect by 0.18–3.35%.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13466-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Studies are underway to apply phase change materials (PCMs) to buildings to reduce energy consumption. PCMs can be expected to achieve energy savings by exploiting their high latent heat capacity and time-lag phenomenon, slowing down the heat transfer within the structure, and accumulating and releasing latent heat. This study analyzed the appropriate melting point and energy-saving effects based on changes in external climate conditions, attachment location, and PCM properties (thickness and thermal conductivity) through building energy simulations. Climate data were quantitatively categorized into climate zones based on heating degree hours, cooling degree hours, and insolation, and a total of 14 climate zones were proposed. The appropriate melting point based on climate was evidently more effective for cooling than for heating, and external attachment was proved to be more advantageous. As the thickness increased, the appropriate melting point decreased, and the energy-saving effect remained effective. The thermal conductivity increased with the graphite content by 0.90–2.37%, and the appropriate melting point also changed by 0.72–0.91 °C. As the thermal conductivity increased, heat was rapidly transferred within the PCM, altering its energy-saving effect by 0.18–3.35%.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.