{"title":"Abstraction Modulo Stability","authors":"Anna Becchi, Alessandro Cimatti","doi":"10.1007/s10703-024-00461-2","DOIUrl":null,"url":null,"abstract":"<p>The analysis of legacy systems requires the automated extraction of high-level specifications. We propose a framework, called Abstraction Modulo Stability, for the analysis of transition systems operating in stable states, and responding with run-to-completion transactions to external stimuli. The abstraction captures, in the form of a finite state machine, the effects of external stimuli on the system state. This approach is parametric on a set of predicates of interest and on the definition of stability. We consider some possible stability definitions, which yield different practically relevant abstractions, and propose parametric algorithms for abstraction computation. The framework is evaluated in terms of expressivity and adequacy within an industrial project with the Italian Railway Network, on reverse engineering of relay-based interlocking circuits to extract specifications for a computer-based reimplementation.</p>","PeriodicalId":12430,"journal":{"name":"Formal Methods in System Design","volume":"16 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Methods in System Design","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10703-024-00461-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of legacy systems requires the automated extraction of high-level specifications. We propose a framework, called Abstraction Modulo Stability, for the analysis of transition systems operating in stable states, and responding with run-to-completion transactions to external stimuli. The abstraction captures, in the form of a finite state machine, the effects of external stimuli on the system state. This approach is parametric on a set of predicates of interest and on the definition of stability. We consider some possible stability definitions, which yield different practically relevant abstractions, and propose parametric algorithms for abstraction computation. The framework is evaluated in terms of expressivity and adequacy within an industrial project with the Italian Railway Network, on reverse engineering of relay-based interlocking circuits to extract specifications for a computer-based reimplementation.
期刊介绍:
The focus of this journal is on formal methods for designing, implementing, and validating the correctness of hardware (VLSI) and software systems. The stimulus for starting a journal with this goal came from both academia and industry. In both areas, interest in the use of formal methods has increased rapidly during the past few years. The enormous cost and time required to validate new designs has led to the realization that more powerful techniques must be developed. A number of techniques and tools are currently being devised for improving the reliability, and robustness of complex hardware and software systems. While the boundary between the (sub)components of a system that are cast in hardware, firmware, or software continues to blur, the relevant design disciplines and formal methods are maturing rapidly. Consequently, an important (and useful) collection of commonly applicable formal methods are expected to emerge that will strongly influence future design environments and design methods.