Effect of Battery Pack Stiffness Depending on Battery Cell Types in Cell-to-Pack Technology

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Jong Wook Lee
{"title":"Effect of Battery Pack Stiffness Depending on Battery Cell Types in Cell-to-Pack Technology","authors":"Jong Wook Lee","doi":"10.1007/s12239-024-00148-x","DOIUrl":null,"url":null,"abstract":"<p>High-voltage batteries used in electric vehicles use hundreds or thousands of battery cells. Because a large number of battery cells are used, installing each one into a battery pack causes many difficulties in production. Therefore, traditionally, multiple battery cells are composed of several battery modules and then assembled into a battery pack. However, recently, Cell-to-Pack (CTP) technology that configures battery cells directly into a battery pack is being developed to increase energy density of a battery pack. This is because parts needed for battery modules can be removed, which can have various advantages. Because modules are eliminated in CTP technology, the method of installing battery cells in a battery pack will also be modified and the effect battery cells have on the stiffness of a battery pack will also change. In this study, the differences in stiffness of battery packs based on CTP technology developed for various battery cell types are analyzed. In particular, battery packs with CTP technology are generated based on pouch-type battery cells and prismatic battery cells and how each type of battery cell changes the stiffness of a battery pack is analyzed.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"75 12 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00148-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-voltage batteries used in electric vehicles use hundreds or thousands of battery cells. Because a large number of battery cells are used, installing each one into a battery pack causes many difficulties in production. Therefore, traditionally, multiple battery cells are composed of several battery modules and then assembled into a battery pack. However, recently, Cell-to-Pack (CTP) technology that configures battery cells directly into a battery pack is being developed to increase energy density of a battery pack. This is because parts needed for battery modules can be removed, which can have various advantages. Because modules are eliminated in CTP technology, the method of installing battery cells in a battery pack will also be modified and the effect battery cells have on the stiffness of a battery pack will also change. In this study, the differences in stiffness of battery packs based on CTP technology developed for various battery cell types are analyzed. In particular, battery packs with CTP technology are generated based on pouch-type battery cells and prismatic battery cells and how each type of battery cell changes the stiffness of a battery pack is analyzed.

Abstract Image

电池组刚度对电池芯对电池组技术中电池芯类型的影响
电动汽车中使用的高压电池使用成百上千个电池单元。由于使用了大量电池芯,将每个电池芯安装到电池组中会给生产带来很多困难。因此,传统的做法是将多个电池单元组成多个电池模块,然后组装成电池组。不过,最近正在开发将电池单元直接配置到电池组中的电池组对电池组(Cell-to-Pack,CTP)技术,以提高电池组的能量密度。这是因为可以去掉电池模块所需的部件,从而具有各种优势。由于 CTP 技术取消了模块,电池组中电池单元的安装方法也将随之改变,电池单元对电池组刚度的影响也将随之改变。本研究分析了基于 CTP 技术开发的各种电池芯类型的电池组在刚度上的差异。特别是根据袋式电池芯和棱柱电池芯生成采用 CTP 技术的电池组,并分析每种电池芯如何改变电池组的刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信