{"title":"Toxicity prediction and risk assessment of per- and polyfluoroalkyl substances for threatened and endangered fishes","authors":"Yuanpu Ji, Xiaolei Wang, Rui Wang, Jiayu Wang, Xiaoli Zhao, Fengchang Wu","doi":"10.1016/j.envpol.2024.124920","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFASs) are severely polluted in aquatic environments and can harm aquatic organisms. Due to the limitation of conducting toxicity experiments directly on threatened and endangered (T&E) species, their toxicity data is scarce, hindering accurate risk assessments. The development of computational toxicology makes it possible to assess the risk of pollutants to T&E fishes. This study innovatively combined machine learning models, including random forest (RF), artificial neural network (ANN), and XGBoost, and the QSAR-ICE model to predict chronic developmental toxicity data of PFASs to T&E fishes. Among these, the XGBoost model exhibited superior performance, with R of 0.95 and 0.81 for the training and testing sets, respectively. Internal and external validation further confirmed that the XGBoost model is robust and reliable. Subsequently, it was used to predict chronic developmental toxicity data for seven priority PFASs to T&E fishes in the Yangtze River. Acipenseridae fishes (e.g., and ) showed high sensitivity to PFASs, possibly due to their unique lifestyle and physiological characteristics. Based on these data, the predicted no-effect concentration (PNEC) of individual PFASs was calculated, and the risk for T&E fishes in the Yangtze River was assessed. The results indicated that the risk of PFASs to T&E fishes is low (3.85 × 10∼8.20 × 10), with perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) as the high-risk pollutants. The risk in the middle and lower reaches of the river is higher than in the upper reaches. This study provides a new approach for obtaining chronic toxicity data and conducting risk assessments for T&E species, advancing the protection of T&E species worldwide.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.124920","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFASs) are severely polluted in aquatic environments and can harm aquatic organisms. Due to the limitation of conducting toxicity experiments directly on threatened and endangered (T&E) species, their toxicity data is scarce, hindering accurate risk assessments. The development of computational toxicology makes it possible to assess the risk of pollutants to T&E fishes. This study innovatively combined machine learning models, including random forest (RF), artificial neural network (ANN), and XGBoost, and the QSAR-ICE model to predict chronic developmental toxicity data of PFASs to T&E fishes. Among these, the XGBoost model exhibited superior performance, with R of 0.95 and 0.81 for the training and testing sets, respectively. Internal and external validation further confirmed that the XGBoost model is robust and reliable. Subsequently, it was used to predict chronic developmental toxicity data for seven priority PFASs to T&E fishes in the Yangtze River. Acipenseridae fishes (e.g., and ) showed high sensitivity to PFASs, possibly due to their unique lifestyle and physiological characteristics. Based on these data, the predicted no-effect concentration (PNEC) of individual PFASs was calculated, and the risk for T&E fishes in the Yangtze River was assessed. The results indicated that the risk of PFASs to T&E fishes is low (3.85 × 10∼8.20 × 10), with perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) as the high-risk pollutants. The risk in the middle and lower reaches of the river is higher than in the upper reaches. This study provides a new approach for obtaining chronic toxicity data and conducting risk assessments for T&E species, advancing the protection of T&E species worldwide.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.