Machine Learning for Reducing Noise in RF Control Signals at Industrial Accelerators

M. Henderson, J. P. Edelen, J. Einstein-Curtis, C. C. Hall, J. A. Diaz Cruz, A. L. Edelen
{"title":"Machine Learning for Reducing Noise in RF Control Signals at Industrial Accelerators","authors":"M. Henderson, J. P. Edelen, J. Einstein-Curtis, C. C. Hall, J. A. Diaz Cruz, A. L. Edelen","doi":"arxiv-2409.03931","DOIUrl":null,"url":null,"abstract":"Industrial particle accelerators typically operate in dirtier environments\nthan research accelerators, leading to increased noise in RF and electronic\nsystems. Furthermore, given that industrial accelerators are mass produced,\nless attention is given to optimizing the performance of individual systems. As\na result, industrial accelerators tend to underperform their own hardware\ncapabilities. Improving signal processing for these machines will improve cost\nand time margins for deployment, helping to meet the growing demand for\naccelerators for medical sterilization, food irradiation, cancer treatment, and\nimaging. Our work focuses on using machine learning techniques to reduce noise\nin RF signals used for pulse-to-pulse feedback in industrial accelerators. Here\nwe review our algorithms and observed results for simulated RF systems, and\ndiscuss next steps with the ultimate goal of deployment on industrial systems.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"542 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial particle accelerators typically operate in dirtier environments than research accelerators, leading to increased noise in RF and electronic systems. Furthermore, given that industrial accelerators are mass produced, less attention is given to optimizing the performance of individual systems. As a result, industrial accelerators tend to underperform their own hardware capabilities. Improving signal processing for these machines will improve cost and time margins for deployment, helping to meet the growing demand for accelerators for medical sterilization, food irradiation, cancer treatment, and imaging. Our work focuses on using machine learning techniques to reduce noise in RF signals used for pulse-to-pulse feedback in industrial accelerators. Here we review our algorithms and observed results for simulated RF systems, and discuss next steps with the ultimate goal of deployment on industrial systems.
机器学习降低工业加速器射频控制信号中的噪声
工业粒子加速器通常在比研究加速器更脏的环境中工作,导致射频和电子系统的噪声增加。此外,由于工业加速器是批量生产的,因此较少关注单个系统的性能优化。因此,工业加速器的性能往往低于其自身的硬件能力。改进这些机器的信号处理将提高部署的成本和时间余量,有助于满足医疗消毒、食品辐照、癌症治疗和成像对加速器日益增长的需求。我们的工作重点是利用机器学习技术降低工业加速器中用于脉冲到脉冲反馈的射频信号中的噪声。在此,我们回顾了我们的算法和对模拟射频系统的观察结果,并讨论了下一步工作,最终目标是在工业系统中进行部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信