Towards Agentic AI on Particle Accelerators

Antonin Sulc, Thorsten Hellert, Raimund Kammering, Hayden Houscher, Jason St. John
{"title":"Towards Agentic AI on Particle Accelerators","authors":"Antonin Sulc, Thorsten Hellert, Raimund Kammering, Hayden Houscher, Jason St. John","doi":"arxiv-2409.06336","DOIUrl":null,"url":null,"abstract":"As particle accelerators grow in complexity, traditional control methods face\nincreasing challenges in achieving optimal performance. This paper envisions a\nparadigm shift: a decentralized multi-agent framework for accelerator control,\npowered by Large Language Models (LLMs) and distributed among autonomous\nagents. We present a proposition of a self-improving decentralized system where\nintelligent agents handle high-level tasks and communication and each agent is\nspecialized control individual accelerator components. This approach raises some questions: What are the future applications of AI\nin particle accelerators? How can we implement an autonomous complex system\nsuch as a particle accelerator where agents gradually improve through\nexperience and human feedback? What are the implications of integrating a\nhuman-in-the-loop component for labeling operational data and providing expert\nguidance? We show two examples, where we demonstrate viability of such\narchitecture.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As particle accelerators grow in complexity, traditional control methods face increasing challenges in achieving optimal performance. This paper envisions a paradigm shift: a decentralized multi-agent framework for accelerator control, powered by Large Language Models (LLMs) and distributed among autonomous agents. We present a proposition of a self-improving decentralized system where intelligent agents handle high-level tasks and communication and each agent is specialized control individual accelerator components. This approach raises some questions: What are the future applications of AI in particle accelerators? How can we implement an autonomous complex system such as a particle accelerator where agents gradually improve through experience and human feedback? What are the implications of integrating a human-in-the-loop component for labeling operational data and providing expert guidance? We show two examples, where we demonstrate viability of such architecture.
在粒子加速器上实现代理人工智能
随着粒子加速器的复杂性不断增加,传统的控制方法在实现最佳性能方面面临着越来越大的挑战。本文设想了一种范式转变:一种用于加速器控制的去中心化多代理框架,由大型语言模型(LLM)驱动,分布在自主代理之间。我们提出了一个自我完善的去中心化系统,由智能代理处理高级任务和通信,每个代理专门控制单个加速器组件。这种方法提出了一些问题:人工智能在粒子加速器中的未来应用是什么?我们如何才能实现粒子加速器这样的自主复杂系统,让代理通过经验和人类反馈逐步改进?在标注运行数据和提供专家指导时,集成人在回路中的组件会产生什么影响?我们展示了两个例子,证明了这种架构的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信