Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal

Mahindra Rautela, Alan Williams, Alexander Scheinker
{"title":"Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal","authors":"Mahindra Rautela, Alan Williams, Alexander Scheinker","doi":"arxiv-2408.07847","DOIUrl":null,"url":null,"abstract":"Charged particle dynamics under the influence of electromagnetic fields is a\nchallenging spatiotemporal problem. Many high performance physics-based\nsimulators for predicting behavior in a charged particle beam are\ncomputationally expensive, limiting their utility for solving inverse problems\nonline. The problem of estimating upstream six-dimensional phase space given\ndownstream measurements of charged particles in an accelerator is an inverse\nproblem of growing importance. This paper introduces a reverse Latent Evolution\nModel (rLEM) designed for temporal inversion of forward beam dynamics. In this\ntwo-step self-supervised deep learning framework, we utilize a Conditional\nVariational Autoencoder (CVAE) to project 6D phase space projections of a\ncharged particle beam into a lower-dimensional latent distribution.\nSubsequently, we autoregressively learn the inverse temporal dynamics in the\nlatent space using a Long Short-Term Memory (LSTM) network. The coupled\nCVAE-LSTM framework can predict 6D phase space projections across all upstream\naccelerating sections based on single or multiple downstream phase space\nmeasurements as inputs. The proposed model also captures the aleatoric\nuncertainty of the high-dimensional input data within the latent space. This\nuncertainty, which reflects potential uncertain measurements at a given module,\nis propagated through the LSTM to estimate uncertainty bounds for all upstream\npredictions, demonstrating the robustness of the LSTM against in-distribution\nvariations in the input data.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Charged particle dynamics under the influence of electromagnetic fields is a challenging spatiotemporal problem. Many high performance physics-based simulators for predicting behavior in a charged particle beam are computationally expensive, limiting their utility for solving inverse problems online. The problem of estimating upstream six-dimensional phase space given downstream measurements of charged particles in an accelerator is an inverse problem of growing importance. This paper introduces a reverse Latent Evolution Model (rLEM) designed for temporal inversion of forward beam dynamics. In this two-step self-supervised deep learning framework, we utilize a Conditional Variational Autoencoder (CVAE) to project 6D phase space projections of a charged particle beam into a lower-dimensional latent distribution. Subsequently, we autoregressively learn the inverse temporal dynamics in the latent space using a Long Short-Term Memory (LSTM) network. The coupled CVAE-LSTM framework can predict 6D phase space projections across all upstream accelerating sections based on single or multiple downstream phase space measurements as inputs. The proposed model also captures the aleatoric uncertainty of the high-dimensional input data within the latent space. This uncertainty, which reflects potential uncertain measurements at a given module, is propagated through the LSTM to estimate uncertainty bounds for all upstream predictions, demonstrating the robustness of the LSTM against in-distribution variations in the input data.
利用不确定性感知潜演化反转实现时空光束动力学的时间反转
电磁场影响下的带电粒子动力学是一个具有挑战性的时空问题。许多用于预测带电粒子束行为的高性能物理模拟器计算成本高昂,限制了它们在线解决逆问题的实用性。根据加速器中带电粒子的下游测量结果估算上游六维相空间是一个日益重要的逆问题。本文介绍了一种反向潜伏进化模型(rLEM),该模型专为前向光束动力学的时间反演而设计。在分两步进行的自我监督深度学习框架中,我们利用条件变异自动编码器(CVAE)将粒子束的 6D 相空间投影投射到低维潜在分布中。耦合 CVAE-LSTM 框架可以根据单个或多个下游相空间测量结果作为输入,预测所有上游加速段的 6D 相空间投影。所提出的模型还能捕捉潜空间内高维输入数据的不确定性。这种不确定性反映了特定模块上潜在的不确定测量值,通过 LSTM 传播来估计所有上游加速预测的不确定性边界,证明了 LSTM 对输入数据分布变化的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信