Reconstructing Gamma-ray Energy Distributions from PEDRO Pair Spectrometer Data

M. Yadav, M. H. Oruganti, B. Naranjo, G. Andonian, Ö. Apsimon, C. P. Welsch, J. B. Rosenzweig
{"title":"Reconstructing Gamma-ray Energy Distributions from PEDRO Pair Spectrometer Data","authors":"M. Yadav, M. H. Oruganti, B. Naranjo, G. Andonian, Ö. Apsimon, C. P. Welsch, J. B. Rosenzweig","doi":"arxiv-2409.02113","DOIUrl":null,"url":null,"abstract":"Photons emitted from high-energy electron beam interactions with high-field\nsystems, such as the upcoming FACET-II experiments at SLAC National Accelerator\nLaboratory, may provide deep insight into the electron beam's underlying\ndynamics at the interaction point. With high-energy photons being utilized to\ngenerate electron-positron pairs in a novel spectrometer, there remains a key\nproblem of interpreting the spectrometer's raw data to determine the energy\ndistribution of the incoming photons. This paper uses data from simulations of\nthe primary radiation emitted from electron interactions with a high-field,\nshort-pulse laser to determine optimally reliable methods of reconstructing the\nmeasured photon energy distributions. For these measurements, recovering the\nemitted 10 MeV to 10 GeV photon energy spectra from the pair spectrometer\ncurrently being commissioned requires testing multiple methods to finalize a\npipeline from the spectrometer data to incident photon and, by extension,\nelectron beam information. In this study, we compare the performance QR\ndecomposition, a matrix deconstruction technique and neural network with and\nwithout maximum likelihood estimation (MLE). Although QR decomposition proved\nto be the most effective theoretically, combining machine learning and MLE\nproved to be superior in the presence of noise, indicating its promise for\nanalysis pipelines involving high-energy photons.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photons emitted from high-energy electron beam interactions with high-field systems, such as the upcoming FACET-II experiments at SLAC National Accelerator Laboratory, may provide deep insight into the electron beam's underlying dynamics at the interaction point. With high-energy photons being utilized to generate electron-positron pairs in a novel spectrometer, there remains a key problem of interpreting the spectrometer's raw data to determine the energy distribution of the incoming photons. This paper uses data from simulations of the primary radiation emitted from electron interactions with a high-field, short-pulse laser to determine optimally reliable methods of reconstructing the measured photon energy distributions. For these measurements, recovering the emitted 10 MeV to 10 GeV photon energy spectra from the pair spectrometer currently being commissioned requires testing multiple methods to finalize a pipeline from the spectrometer data to incident photon and, by extension, electron beam information. In this study, we compare the performance QR decomposition, a matrix deconstruction technique and neural network with and without maximum likelihood estimation (MLE). Although QR decomposition proved to be the most effective theoretically, combining machine learning and MLE proved to be superior in the presence of noise, indicating its promise for analysis pipelines involving high-energy photons.
从 PEDRO 对谱仪数据重建伽马射线能量分布
高能电子束与高场系统(如即将在 SLAC 国家加速器实验室进行的 FACET-II 实验)相互作用所发出的光子,可以让人们深入了解电子束在相互作用点的基本动力学。在新型光谱仪中利用高能光子产生电子-正电子对,仍然存在一个关键问题,即如何解释光谱仪的原始数据,以确定进入光子的能量分布。本文利用模拟电子与高场短脉冲激光器相互作用所发射的主要辐射的数据,确定了重建测量到的光子能量分布的最佳可靠方法。对于这些测量,要从目前正在调试的对分光计中恢复发射的 10 MeV 至 10 GeV 光子能量谱,需要测试多种方法,以最终确定从分光计数据到入射光子以及电子束信息的传输线。在这项研究中,我们比较了 QR分解、矩阵解构技术和神经网络与最大似然估计(MLE)的性能。尽管 QR 分解在理论上被证明是最有效的,但在存在噪声的情况下,机器学习与 MLE 的结合被证明是更优越的,这表明它在涉及高能光子的分析管道中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信