On the regularity of optimal potentials in control problems governed by elliptic equations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Giuseppe Buttazzo, Juan Casado-Díaz, Faustino Maestre
{"title":"On the regularity of optimal potentials in control problems governed by elliptic equations","authors":"Giuseppe Buttazzo, Juan Casado-Díaz, Faustino Maestre","doi":"10.1515/acv-2023-0010","DOIUrl":null,"url":null,"abstract":"In this paper we consider optimal control problems where the control variable is a potential and the state equation is an elliptic partial differential equation of Schrödinger type, governed by the Laplace operator. The cost functional involves the solution of the state equation and a penalization term for the control variable. While the existence of an optimal solution simply follows by the direct methods of the calculus of variations, the regularity of the optimal potential is a difficult question and under the general assumptions we consider, no better regularity than the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>BV</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0010_eq_0228.png\"/> <jats:tex-math>\\mathrm{BV}</jats:tex-math> </jats:alternatives> </jats:inline-formula> one can be expected. This happens in particular for the cases in which a bang-bang solution occurs, where optimal potentials are characteristic functions of a domain. We prove the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>BV</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_acv-2023-0010_eq_0228.png\"/> <jats:tex-math>\\mathrm{BV}</jats:tex-math> </jats:alternatives> </jats:inline-formula> regularity of optimal solutions through a regularity result for PDEs. Some numerical simulations show the behavior of optimal potentials in some particular cases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2023-0010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider optimal control problems where the control variable is a potential and the state equation is an elliptic partial differential equation of Schrödinger type, governed by the Laplace operator. The cost functional involves the solution of the state equation and a penalization term for the control variable. While the existence of an optimal solution simply follows by the direct methods of the calculus of variations, the regularity of the optimal potential is a difficult question and under the general assumptions we consider, no better regularity than the BV \mathrm{BV} one can be expected. This happens in particular for the cases in which a bang-bang solution occurs, where optimal potentials are characteristic functions of a domain. We prove the BV \mathrm{BV} regularity of optimal solutions through a regularity result for PDEs. Some numerical simulations show the behavior of optimal potentials in some particular cases.
论椭圆方程控制问题中最优势的正则性
在本文中,我们考虑了最优控制问题,其中控制变量是一个势,状态方程是一个由拉普拉斯算子控制的薛定谔型椭圆偏微分方程。成本函数涉及状态方程的解和控制变量的惩罚项。虽然通过变分微积分的直接方法可以简单地得出最优解的存在,但最优势的正则性却是一个难题,在我们所考虑的一般假设下,不可能有比 BV \mathrm{BV} 更好的正则性。这种情况尤其发生在出现砰砰解的情况下,即最优势是域的特征函数。我们通过一个 PDE 的正则性结果证明了最优解的 BV \mathrm{BV} 正则性。一些数值模拟显示了最优势在一些特殊情况下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信