Nonlinear Maps Preserving the Mixed Type Product \((M\diamond N \circ W)\) on \(*\)-Algebras

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Mohammad Aslam Siddeeque, Raof Ahmad Bhat, Abbas Hussain Shikeh
{"title":"Nonlinear Maps Preserving the Mixed Type Product \\((M\\diamond N \\circ W)\\) on \\(*\\)-Algebras","authors":"Mohammad Aslam Siddeeque,&nbsp;Raof Ahmad Bhat,&nbsp;Abbas Hussain Shikeh","doi":"10.1007/s40995-024-01666-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathcal {S}}\\)</span> and <span>\\({\\mathfrak {B}}\\)</span> be two unital <span>\\(*\\)</span>-algebras such that <span>\\({\\mathcal {S}}\\)</span> has a nontrivial projection. In the present article, we demonstrate, under certain restrictions that if a bijective map <span>\\(\\Delta :{\\mathcal {S}}\\rightarrow {\\mathfrak {B}}\\)</span> satisfies <span>\\(\\Delta (M\\diamond N \\circ W) = \\Delta (M)\\diamond \\Delta (N)\\circ \\Delta (W)\\)</span> for all <span>\\(M, N, W \\in {\\mathcal {S}}\\)</span>, then <span>\\(\\Delta\\)</span> is a <span>\\(*\\)</span>-preserving ring isomorphism. As an application, we will describe these mappings on factor von Neumann algebras.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"48 5","pages":"1307 - 1312"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01666-0","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\mathcal {S}}\) and \({\mathfrak {B}}\) be two unital \(*\)-algebras such that \({\mathcal {S}}\) has a nontrivial projection. In the present article, we demonstrate, under certain restrictions that if a bijective map \(\Delta :{\mathcal {S}}\rightarrow {\mathfrak {B}}\) satisfies \(\Delta (M\diamond N \circ W) = \Delta (M)\diamond \Delta (N)\circ \Delta (W)\) for all \(M, N, W \in {\mathcal {S}}\), then \(\Delta\) is a \(*\)-preserving ring isomorphism. As an application, we will describe these mappings on factor von Neumann algebras.

在 $$*$$ -代数上保存混合类型积 $$(M\diamond N\circ W)$$ 的非线性映射
让\({\mathcal {S}}\) 和\({\mathfrak {B}}\) 是两个一元\(*\)-代数,使得\({\mathcal {S}}\) 有一个非三维投影。在本文中,我们将在某些限制条件下证明,如果一个双射映射 \(\Delta :{)满足(\Delta (M\diamond N\circ W) = \Delta (M)\diamond \Delta (N)\circ \Delta (W)\) for all \(M、N, W 在{mathcal {S}}\)中,那么 \(\Delta\) 是一个(*)保环同构。作为应用,我们将描述这些映射在因子冯诺伊曼代数上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信