A Robust Higher-Order Scheme for Fractional Delay Differential Equations Involving Caputo Derivative

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Biswajit Prusty, Madhukant Sharma
{"title":"A Robust Higher-Order Scheme for Fractional Delay Differential Equations Involving Caputo Derivative","authors":"Biswajit Prusty,&nbsp;Madhukant Sharma","doi":"10.1007/s40995-024-01695-9","DOIUrl":null,"url":null,"abstract":"<div><p>This article considers nonlinear fractional delay differential equations involving Caputo’s fractional derivative of order <span>\\(\\alpha \\in (0,1)\\)</span>. We focus on designing a robust numerical algorithm of order <span>\\(O(h^{4-\\alpha })\\)</span>. To achieve this, we developed a higher-order interpolation-based approximation for Caputo’s derivative, which enables us to construct a robust numerical scheme for the considered problem. Furthermore, we discuss the stability and error analysis of the proposed higher-order scheme. Finally, numerous examples, including real-life applications, are evaluated to demonstrate the computational efficiency of the proposed algorithm.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01695-9","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article considers nonlinear fractional delay differential equations involving Caputo’s fractional derivative of order \(\alpha \in (0,1)\). We focus on designing a robust numerical algorithm of order \(O(h^{4-\alpha })\). To achieve this, we developed a higher-order interpolation-based approximation for Caputo’s derivative, which enables us to construct a robust numerical scheme for the considered problem. Furthermore, we discuss the stability and error analysis of the proposed higher-order scheme. Finally, numerous examples, including real-life applications, are evaluated to demonstrate the computational efficiency of the proposed algorithm.

Abstract Image

Abstract Image

涉及卡普托导数的分式延迟微分方程的稳健高阶方案
本文考虑了涉及卡普托分数导数的非线性分数延迟微分方程,其阶数为\(\alpha \in (0,1)\)。我们的重点是设计一种鲁棒的数值算法(O(h^{4-\alpha })。为此,我们开发了一种基于插值的高阶近似 Caputo 导数,从而为所考虑的问题构建了一种稳健的数值方案。此外,我们还讨论了所提出的高阶方案的稳定性和误差分析。最后,我们对包括现实应用在内的大量实例进行了评估,以证明所提算法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信