Induction of Non-Canonical Ferroptosis by Targeting Clusters Suppresses Glioblastoma

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Kai Cao, Liyuan Xue, Kaidi Luo, Wendi Huo, Panpan Ruan, Dongfang Xia, Xiuxiu Yao, Wencong Zhao, Liang Gao, Xueyun Gao
{"title":"Induction of Non-Canonical Ferroptosis by Targeting Clusters Suppresses Glioblastoma","authors":"Kai Cao, Liyuan Xue, Kaidi Luo, Wendi Huo, Panpan Ruan, Dongfang Xia, Xiuxiu Yao, Wencong Zhao, Liang Gao, Xueyun Gao","doi":"10.3390/pharmaceutics16091205","DOIUrl":null,"url":null,"abstract":"Glioblastoma multiforme (GBM) is the most aggressive brain tumor. There is a pressing need to develop novel treatment strategies due to the poor targeting effect of current therapeutics. Here, a gold cluster coated with optimized GBM-targeting peptide is engineered, namely NA. NA can efficiently target GBM both in vitro and in vivo. Interestingly, the uptake of NA significantly sensitizes GBM cells to ferroptosis, a form of programmed cell death that can bypass the tumor resistance to apoptosis. This effect is exerted through regulating the HO-1-dependent iron ion metabolism, which is the non-canonical pathway of ferroptosis. The combined treatment of a ferroptosis inducer and NA profoundly inhibited tumor growth in both the GBM spheroid model and a syngeneic mouse model with enhanced ferroptosis levels and excellent biosafety. Importantly, the infiltration of tumoricidal lymphocytes is also significantly increased within tumor. Therefore, NA presents a potential novel nanomaterial-based strategy for GBM treatment.","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16091205","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma multiforme (GBM) is the most aggressive brain tumor. There is a pressing need to develop novel treatment strategies due to the poor targeting effect of current therapeutics. Here, a gold cluster coated with optimized GBM-targeting peptide is engineered, namely NA. NA can efficiently target GBM both in vitro and in vivo. Interestingly, the uptake of NA significantly sensitizes GBM cells to ferroptosis, a form of programmed cell death that can bypass the tumor resistance to apoptosis. This effect is exerted through regulating the HO-1-dependent iron ion metabolism, which is the non-canonical pathway of ferroptosis. The combined treatment of a ferroptosis inducer and NA profoundly inhibited tumor growth in both the GBM spheroid model and a syngeneic mouse model with enhanced ferroptosis levels and excellent biosafety. Importantly, the infiltration of tumoricidal lymphocytes is also significantly increased within tumor. Therefore, NA presents a potential novel nanomaterial-based strategy for GBM treatment.
通过靶向集群诱导非正则铁突变抑制胶质母细胞瘤
多形性胶质母细胞瘤(GBM)是侵袭性最强的脑肿瘤。由于目前的治疗药物靶向效果不佳,因此迫切需要开发新的治疗策略。在这里,我们设计了一种涂有优化的 GBM 靶向肽(即 NA)的金簇。NA 在体外和体内都能有效靶向 GBM。有趣的是,NA的摄取能使GBM细胞对铁凋亡显著敏感,而铁凋亡是一种程序性细胞死亡,能绕过肿瘤对细胞凋亡的抵抗。这种效应是通过调节 HO-1 依赖性铁离子代谢产生的,而 HO-1 是铁凋亡的非经典途径。铁突变诱导剂和NA的联合治疗可显著抑制GBM球形模型和合成小鼠模型中的肿瘤生长,并提高铁突变水平和生物安全性。重要的是,肿瘤内杀瘤淋巴细胞的浸润也显著增加。因此,NA是一种潜在的基于纳米材料的治疗GBM的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信