{"title":"Recent Applications of Amphiphilic Copolymers in Drug Release Systems for Skin Treatment","authors":"Yudy Vanessa Cardona, Lizeth Geraldine Muñoz, Daniela Gutierrez Cardozo, Andrés Felipe Chamorro","doi":"10.3390/pharmaceutics16091203","DOIUrl":null,"url":null,"abstract":"Amphiphilic copolymers (ACs) are versatile systems with self-assembling and aggregating properties, enabling the formation of nanomaterials (NMs) such as micelles, vesicles, nanocapsules, and nanogels. These materials have been extensively explored for the delivery of various drugs and active compounds, enhancing the solubility and permeation of poorly water-soluble drugs into skin tissue. This improvement facilitates the treatment of skin diseases, including chronic conditions like cancer, as well as infections caused by bacteria, fungi, and viruses. This review summarizes recent applications of ACs in skin treatment, with a particular focus on their use in anti-cancer drug therapy. It covers the synthesis, classification, and characterization of ACs using various experimental techniques. Additionally, it discusses recent research on different drug delivery pathways using ACs, including encapsulation efficiency, release behavior, characteristics, applications, and responses to various chemical and physical stimuli (both in vivo and in vitro). Furthermore, this review provides a comprehensive analysis of the effects of ACs NMs on several skin diseases, highlighting their potential as alternative treatments.","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16091203","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Amphiphilic copolymers (ACs) are versatile systems with self-assembling and aggregating properties, enabling the formation of nanomaterials (NMs) such as micelles, vesicles, nanocapsules, and nanogels. These materials have been extensively explored for the delivery of various drugs and active compounds, enhancing the solubility and permeation of poorly water-soluble drugs into skin tissue. This improvement facilitates the treatment of skin diseases, including chronic conditions like cancer, as well as infections caused by bacteria, fungi, and viruses. This review summarizes recent applications of ACs in skin treatment, with a particular focus on their use in anti-cancer drug therapy. It covers the synthesis, classification, and characterization of ACs using various experimental techniques. Additionally, it discusses recent research on different drug delivery pathways using ACs, including encapsulation efficiency, release behavior, characteristics, applications, and responses to various chemical and physical stimuli (both in vivo and in vitro). Furthermore, this review provides a comprehensive analysis of the effects of ACs NMs on several skin diseases, highlighting their potential as alternative treatments.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.