Klervi Golhen, Michael Buettcher, Jörg Huwyler, John van den Anker, Verena Gotta, Kim Dao, Laura E. Rothuizen, Kevin Kobylinski, Marc Pfister
{"title":"Pharmacometrics to Evaluate Dosing of the Patient-Friendly Ivermectin CHILD-IVITAB in Children ≥ 15 kg and <15 kg","authors":"Klervi Golhen, Michael Buettcher, Jörg Huwyler, John van den Anker, Verena Gotta, Kim Dao, Laura E. Rothuizen, Kevin Kobylinski, Marc Pfister","doi":"10.3390/pharmaceutics16091186","DOIUrl":null,"url":null,"abstract":"The antiparasitic drug ivermectin is approved for persons > 15 kg in the US and EU. A pharmacometric (PMX) population model with clinical PK data was developed (i) to characterize the effect of the patient-friendly ivermectin formulation CHILD-IVITAB on the absorption process and (ii) to evaluate dosing for studies in children < 15 kg. Simulations were performed to identify dosing with CHILD-IVITAB associated with similar exposure coverage in children ≥ 15 kg and < 15 kg as observed in adults receiving the reference formulation STROMECTOL®. A total of 448 ivermectin concentrations were available from 16 healthy adults. The absorption rate constant was 2.41 h−1 (CV 19%) for CHILD-IVITAB vs. 1.56 h−1 (CV 43%) for STROMECTOL®. Simulations indicated that 250 µg/kg of CHILD-IVITAB is associated with exposure coverage in children < 15 kg consistent with that observed in children ≥ 15 kg and adults receiving 200 µg/kg of STROMECTOL®. Performed analysis confirmed that CHILD-IVITAB is associated with faster and more controlled absorption than STROMECTOL®. Simulations indicate that 250 µg/kg of CHILD-IVITAB achieves equivalent ivermectin exposure coverage in children < 15 kg as seen in children ≥ 15 kg and adults.","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16091186","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The antiparasitic drug ivermectin is approved for persons > 15 kg in the US and EU. A pharmacometric (PMX) population model with clinical PK data was developed (i) to characterize the effect of the patient-friendly ivermectin formulation CHILD-IVITAB on the absorption process and (ii) to evaluate dosing for studies in children < 15 kg. Simulations were performed to identify dosing with CHILD-IVITAB associated with similar exposure coverage in children ≥ 15 kg and < 15 kg as observed in adults receiving the reference formulation STROMECTOL®. A total of 448 ivermectin concentrations were available from 16 healthy adults. The absorption rate constant was 2.41 h−1 (CV 19%) for CHILD-IVITAB vs. 1.56 h−1 (CV 43%) for STROMECTOL®. Simulations indicated that 250 µg/kg of CHILD-IVITAB is associated with exposure coverage in children < 15 kg consistent with that observed in children ≥ 15 kg and adults receiving 200 µg/kg of STROMECTOL®. Performed analysis confirmed that CHILD-IVITAB is associated with faster and more controlled absorption than STROMECTOL®. Simulations indicate that 250 µg/kg of CHILD-IVITAB achieves equivalent ivermectin exposure coverage in children < 15 kg as seen in children ≥ 15 kg and adults.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.