Qicheng Tang, Owen W. Duckworth, Daniel R. Obenour, Stephanie B. Kulesza, Nathan A. Slaton, Andrew H. Whitaker, Natalie G. Nelson
{"title":"Relationships between soil test phosphorus and county-level agricultural surplus phosphorus","authors":"Qicheng Tang, Owen W. Duckworth, Daniel R. Obenour, Stephanie B. Kulesza, Nathan A. Slaton, Andrew H. Whitaker, Natalie G. Nelson","doi":"10.1002/jeq2.20622","DOIUrl":null,"url":null,"abstract":"<p>National nutrient inventories provide surplus phosphorus (P) estimates derived from county-scale mass balance calculations using P inputs from manure and fertilizer sales and P outputs from crop yield data. Although bioavailable P and surplus P are often correlated at the field scale, few studies have investigated the relationship between measured soil P concentrations of large-scale soil testing programs and inventory-based surplus P estimates. In this study, we assessed the relationship between national surplus P data from the NuGIS dataset and laboratory-measured soil test phosphorus (STP) at the county scale for Arkansas, North Carolina, and Oklahoma. For optimal periods of surplus P aggregation, surplus P was positively correlated with STP based on both Pearson (Arkansas: <i>r</i> = 0.65, North Carolina: <i>r</i> = 0.45, Oklahoma: <i>r</i> = 0.52) and Spearman correlation coefficients (Arkansas: <i>ρ</i> = 0.57, North Carolina: <i>ρ</i> = 0.28, and Oklahoma: <i>ρ</i> = 0.66). Based on Pearson correlations, the optimal surplus P aggregation periods were 10, 30, and 4 years for AR, NC, and OK, respectively. On average, STP was more strongly correlated with surplus P than with individual P inventory components (fertilizer, manure, and crop removal), except in North Carolina. In Arkansas and North Carolina, manure P was positively correlated with STP, and fertilizer P was negatively correlated with STP. Altogether, results suggest that surplus P moderately correlates with STP concentrations, but aggregation period and location-specific factors influence the strength of the relationship.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 6","pages":"1127-1139"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jeq2.20622","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20622","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
National nutrient inventories provide surplus phosphorus (P) estimates derived from county-scale mass balance calculations using P inputs from manure and fertilizer sales and P outputs from crop yield data. Although bioavailable P and surplus P are often correlated at the field scale, few studies have investigated the relationship between measured soil P concentrations of large-scale soil testing programs and inventory-based surplus P estimates. In this study, we assessed the relationship between national surplus P data from the NuGIS dataset and laboratory-measured soil test phosphorus (STP) at the county scale for Arkansas, North Carolina, and Oklahoma. For optimal periods of surplus P aggregation, surplus P was positively correlated with STP based on both Pearson (Arkansas: r = 0.65, North Carolina: r = 0.45, Oklahoma: r = 0.52) and Spearman correlation coefficients (Arkansas: ρ = 0.57, North Carolina: ρ = 0.28, and Oklahoma: ρ = 0.66). Based on Pearson correlations, the optimal surplus P aggregation periods were 10, 30, and 4 years for AR, NC, and OK, respectively. On average, STP was more strongly correlated with surplus P than with individual P inventory components (fertilizer, manure, and crop removal), except in North Carolina. In Arkansas and North Carolina, manure P was positively correlated with STP, and fertilizer P was negatively correlated with STP. Altogether, results suggest that surplus P moderately correlates with STP concentrations, but aggregation period and location-specific factors influence the strength of the relationship.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.