{"title":"Resin Acid Copper Salt, an Interesting Chemical Pesticide, Controls Rice Bacterial Leaf Blight by Regulating Bacterial Biofilm, Motility, and Extracellular Enzymes","authors":"Lihong Shi, Xiang Zhou, Puying Qi","doi":"10.3390/molecules29184297","DOIUrl":null,"url":null,"abstract":"Bacterial virulence plays an important role in infection. Antibacterial virulence factors are effective for preventing crop bacterial diseases. Resin acid copper salt as an effective inhibitor exhibited excellent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity with an EC50 of 50.0 μg mL−1. Resin acid copper salt (RACS) can reduce extracellular polysaccharides’ (EPS’s) biosynthesis by down-regulating gumB relative expression. RACS can also effectively inhibit the bio-mass of Xoo biofilm. It can reduce the activity of Xoo extracellular amylase at a concentration of 100 μg mL−1. Meanwhile, the results of virtual computing suggested that RACS is an enzyme inhibitor. RACS displayed good curative activity with a control effect of 38.5%. Furthermore, the result of the phytotoxicity assessment revealed that RACS exhibited slight toxicity compared with the control at a concentration of 200 μg mL−1. The curative effect was increased to 45.0% using an additional antimicrobial agent like orange peel essential oil. RACS markedly inhibited bacterial pathogenicity at a concentration of 100 μg mL−1 in vivo.","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29184297","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial virulence plays an important role in infection. Antibacterial virulence factors are effective for preventing crop bacterial diseases. Resin acid copper salt as an effective inhibitor exhibited excellent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity with an EC50 of 50.0 μg mL−1. Resin acid copper salt (RACS) can reduce extracellular polysaccharides’ (EPS’s) biosynthesis by down-regulating gumB relative expression. RACS can also effectively inhibit the bio-mass of Xoo biofilm. It can reduce the activity of Xoo extracellular amylase at a concentration of 100 μg mL−1. Meanwhile, the results of virtual computing suggested that RACS is an enzyme inhibitor. RACS displayed good curative activity with a control effect of 38.5%. Furthermore, the result of the phytotoxicity assessment revealed that RACS exhibited slight toxicity compared with the control at a concentration of 200 μg mL−1. The curative effect was increased to 45.0% using an additional antimicrobial agent like orange peel essential oil. RACS markedly inhibited bacterial pathogenicity at a concentration of 100 μg mL−1 in vivo.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.