{"title":"Common cytokine receptor gamma chain family cytokines activate MAPK, PI3K, and JAK/STAT pathways in microglia to influence Alzheimer’s Disease","authors":"Hannah Zuppe, Erin Reed","doi":"10.3389/fnmol.2024.1441691","DOIUrl":null,"url":null,"abstract":"Dementia is an umbrella term used to describe deterioration of cognitive function. It is the seventh leading cause of death and is one of the major causes of dependence among older people globally. Alzheimer’s Disease (AD) contributes to approximately 60–70% of dementia cases and is characterized by the accumulation of amyloid plaques and tau tangles in the brain. Neuroinflammation is now widely accepted as another disease hallmark, playing a role in both the response to and the perpetuation of disease processes. Microglia are brain-resident immune cells that are initially effective at clearing amyloid plaques but contribute to the damaging inflammatory milieu of the brain as disease progresses. Circulating peripheral immune cells contribute to this inflammatory environment through cytokine secretion, creating a positive feedback loop with the microglia. One group of these peripherally derived cytokines acting on microglia is the common cytokine receptor γ chain family. These cytokines bind heterodimer receptors to activate three major signaling pathways: MAPK, PI3K, and JAK/STAT. This perspective will look at the mechanisms of these three pathways in microglia and highlight the future directions of this research and potential therapeutics.","PeriodicalId":12630,"journal":{"name":"Frontiers in Molecular Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnmol.2024.1441691","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dementia is an umbrella term used to describe deterioration of cognitive function. It is the seventh leading cause of death and is one of the major causes of dependence among older people globally. Alzheimer’s Disease (AD) contributes to approximately 60–70% of dementia cases and is characterized by the accumulation of amyloid plaques and tau tangles in the brain. Neuroinflammation is now widely accepted as another disease hallmark, playing a role in both the response to and the perpetuation of disease processes. Microglia are brain-resident immune cells that are initially effective at clearing amyloid plaques but contribute to the damaging inflammatory milieu of the brain as disease progresses. Circulating peripheral immune cells contribute to this inflammatory environment through cytokine secretion, creating a positive feedback loop with the microglia. One group of these peripherally derived cytokines acting on microglia is the common cytokine receptor γ chain family. These cytokines bind heterodimer receptors to activate three major signaling pathways: MAPK, PI3K, and JAK/STAT. This perspective will look at the mechanisms of these three pathways in microglia and highlight the future directions of this research and potential therapeutics.
期刊介绍:
Frontiers in Molecular Neuroscience is a first-tier electronic journal devoted to identifying key molecules, as well as their functions and interactions, that underlie the structure, design and function of the brain across all levels. The scope of our journal encompasses synaptic and cellular proteins, coding and non-coding RNA, and molecular mechanisms regulating cellular and dendritic RNA translation. In recent years, a plethora of new cellular and synaptic players have been identified from reduced systems, such as neuronal cultures, but the relevance of these molecules in terms of cellular and synaptic function and plasticity in the living brain and its circuits has not been validated. The effects of spine growth and density observed using gene products identified from in vitro work are frequently not reproduced in vivo. Our journal is particularly interested in studies on genetically engineered model organisms (C. elegans, Drosophila, mouse), in which alterations in key molecules underlying cellular and synaptic function and plasticity produce defined anatomical, physiological and behavioral changes. In the mouse, genetic alterations limited to particular neural circuits (olfactory bulb, motor cortex, cortical layers, hippocampal subfields, cerebellum), preferably regulated in time and on demand, are of special interest, as they sidestep potential compensatory developmental effects.