{"title":"Dynamic Enhanced Weighted Drainage Catchment Basin Method for Extracting Geochemical Anomalies","authors":"Zijia Cui, Jianping Chen, Renwei Zhu, Quanping Zhang, Guanyun Zhou, Zhen Jia, Chang Liu","doi":"10.3390/min14090912","DOIUrl":null,"url":null,"abstract":"Geochemical measurements of stream sediments are practical for small-scale mineral exploration. However, traditional grid interpolation methods cause element concentrations to diffuse and smooth out anomalies, particularly in complex terrains, making it challenging to reflect the actual distribution of elements accurately. We applied the Dynamic Enhanced Weighted Drainage Catchment Basin (DE-WDCB) method to enhance the retention and identification of local anomalies by limiting the scope of analysis to specific drainage units. This method reduces interference from varying background values across different watersheds, effectively enhancing geochemical element anomalies and aligning better with geomorphic conditions. The DE-WDCB method was tested in the Duobaoshan–Heihe area, a significant copper polymetallic mineral district in northeastern China. Compared with traditional grid interpolation methods, the DE-WDCB method retained and strengthened low and weak abnormal information of favorable mineralization elements, particularly in the Luotuowaizi area. The method demonstrated a higher spatial coverage rate with mineral points and a more vital ore-indicating ability. Specifically, the DE-WDCB method identified anomalies with a mean accuracy of 63.57% (p < 0.05, 95% CI: 47.64-79.50%), compared to 50.53% for traditional methods. In conclusion, in regions with a complex topography and watershed differences, the DE-WDCB method effectively reduces local geochemical background interference, accurately identifies low and weak geochemical anomalies, and better reflects the actual distribution of elements. This makes it a significantly advantageous method for geochemical anomaly extraction, delineating higher-confidence exploration targets in the Sandaowan–Luotuowaizi area in the east and the triangular area between Duobaoshan, Yubaoshan, Sankuanggou, and the midstream highlands of the Guanbird River in the west.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090912","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Geochemical measurements of stream sediments are practical for small-scale mineral exploration. However, traditional grid interpolation methods cause element concentrations to diffuse and smooth out anomalies, particularly in complex terrains, making it challenging to reflect the actual distribution of elements accurately. We applied the Dynamic Enhanced Weighted Drainage Catchment Basin (DE-WDCB) method to enhance the retention and identification of local anomalies by limiting the scope of analysis to specific drainage units. This method reduces interference from varying background values across different watersheds, effectively enhancing geochemical element anomalies and aligning better with geomorphic conditions. The DE-WDCB method was tested in the Duobaoshan–Heihe area, a significant copper polymetallic mineral district in northeastern China. Compared with traditional grid interpolation methods, the DE-WDCB method retained and strengthened low and weak abnormal information of favorable mineralization elements, particularly in the Luotuowaizi area. The method demonstrated a higher spatial coverage rate with mineral points and a more vital ore-indicating ability. Specifically, the DE-WDCB method identified anomalies with a mean accuracy of 63.57% (p < 0.05, 95% CI: 47.64-79.50%), compared to 50.53% for traditional methods. In conclusion, in regions with a complex topography and watershed differences, the DE-WDCB method effectively reduces local geochemical background interference, accurately identifies low and weak geochemical anomalies, and better reflects the actual distribution of elements. This makes it a significantly advantageous method for geochemical anomaly extraction, delineating higher-confidence exploration targets in the Sandaowan–Luotuowaizi area in the east and the triangular area between Duobaoshan, Yubaoshan, Sankuanggou, and the midstream highlands of the Guanbird River in the west.
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.