{"title":"New Insights into the Depressive Mechanism of Sodium Silicate on Bastnaesite, Parisite, and Fluorite: Experimental and DFT Study","authors":"Jieliang Wang, Wenda Lu, Zhao Cao, Xu Wu, Peng Wang, Xiaoping Wang, Wenli Liu","doi":"10.3390/min14090870","DOIUrl":null,"url":null,"abstract":"The surface properties of bastnaesite and parisite are similar to their associated gangue mineral, fluorite, which makes the flotation separation of these two rare earth minerals from fluorite one of the industry’s most significant challenges. This study systematically investigates the inhibitory effects and mechanisms of sodium silicate (SS) on bastnaesite, parisite, and fluorite in an octyl hydroxamic acid (OHA) collector system through flotation experiments, various modern analytical methods, and DFT simulations. The flotation test results indicate that the inhibition effects of SS on the three minerals are in the order: fluorite > parisite > bastnaesite. Detection and analysis results indicate that SS forms hydrophilic complexes with Ca atoms on the surfaces of fluorite and parisite, enhancing surface hydrophilicity and inhibiting OHA adsorption, but its impact on bastnaesite is relatively minor. DFT simulation results show that OHA forms covalent bonds with metal ions on mineral surfaces, favoring five-membered hydroxamic-(O-O)-Ce/Ca complexes, and reacts more strongly with Ce atoms than Ca atoms. SS primarily forms covalent bonds with metal atoms on mineral surfaces via the SiO(OH)3− component, and OHA and SS compete for adsorption on the mineral surfaces. OHA has a stronger affinity for bastnaesite, whereas SS shows the highest affinity for fluorite, followed by parisite, and the weakest affinity for bastnaesite.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"17 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090870","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The surface properties of bastnaesite and parisite are similar to their associated gangue mineral, fluorite, which makes the flotation separation of these two rare earth minerals from fluorite one of the industry’s most significant challenges. This study systematically investigates the inhibitory effects and mechanisms of sodium silicate (SS) on bastnaesite, parisite, and fluorite in an octyl hydroxamic acid (OHA) collector system through flotation experiments, various modern analytical methods, and DFT simulations. The flotation test results indicate that the inhibition effects of SS on the three minerals are in the order: fluorite > parisite > bastnaesite. Detection and analysis results indicate that SS forms hydrophilic complexes with Ca atoms on the surfaces of fluorite and parisite, enhancing surface hydrophilicity and inhibiting OHA adsorption, but its impact on bastnaesite is relatively minor. DFT simulation results show that OHA forms covalent bonds with metal ions on mineral surfaces, favoring five-membered hydroxamic-(O-O)-Ce/Ca complexes, and reacts more strongly with Ce atoms than Ca atoms. SS primarily forms covalent bonds with metal atoms on mineral surfaces via the SiO(OH)3− component, and OHA and SS compete for adsorption on the mineral surfaces. OHA has a stronger affinity for bastnaesite, whereas SS shows the highest affinity for fluorite, followed by parisite, and the weakest affinity for bastnaesite.
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.