Wei Wang, Sichun Hu, Shoujing Wang, Hongzhao Liu, Deshui Yu, Lin Liu, Hongliang Wang, Ke Wang
{"title":"Preparation of Nickel–Iron Concentrate from Low-Grade Laterite Nickel Ore by Solid-State Metalized Reduction and Magnetic Separation","authors":"Wei Wang, Sichun Hu, Shoujing Wang, Hongzhao Liu, Deshui Yu, Lin Liu, Hongliang Wang, Ke Wang","doi":"10.3390/min14090926","DOIUrl":null,"url":null,"abstract":"In this paper, the process of solid-state metalized reduction and magnetic separation was investigated for preparation of nickel–iron concentrate from a low-grade laterite nickel ore. The effects of reduction temperature, reduction time, amount of dosages, and magnetic field strength on grades and recoveries of nickel and iron were studied. The results showed that nickel–iron concentrate with a nickel grade of 7.32%, nickel recovery of 81.84%, iron grade of 78.74%, and iron recovery of 69.78% were obtained under the conditions of a reduction temperature of 1200 °C, reduction time of 120 min, calcium fluoride addition of 12%, ferric oxide addition of 10%, coal addition of 12%, and magnetic field strength of 170 kA/m.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"42 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090926","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the process of solid-state metalized reduction and magnetic separation was investigated for preparation of nickel–iron concentrate from a low-grade laterite nickel ore. The effects of reduction temperature, reduction time, amount of dosages, and magnetic field strength on grades and recoveries of nickel and iron were studied. The results showed that nickel–iron concentrate with a nickel grade of 7.32%, nickel recovery of 81.84%, iron grade of 78.74%, and iron recovery of 69.78% were obtained under the conditions of a reduction temperature of 1200 °C, reduction time of 120 min, calcium fluoride addition of 12%, ferric oxide addition of 10%, coal addition of 12%, and magnetic field strength of 170 kA/m.
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.