{"title":"Technological features of submerged arc reduction of useful impurities of metallurgical waste for the treatment of iron-carbon melts","authors":"S. V. Kuberskii","doi":"10.1007/s11015-024-01765-8","DOIUrl":null,"url":null,"abstract":"<div><p>The ladle refining of iron-carbon melts is an essential component of the modern technology used in the production of iron and steel, ensuring the high quality of metal products. However, in the context of mini- and micro-factories using technological units of a limited volume, it is often unfeasible to implement modern, highly efficient refining, deoxidation-alloying, and heating schemes that are commonly used by ladle furnaces and degassers. In addition, the issue of the widespread use of various production wastes for the production of cast iron and steel in order to recycle them and reduce the consumption of conventional charge materials is relevant. Therefore, a new method of submerged arc reduction of elements useful for metallurgy from industrial waste and secondary materials directly into an iron-carbon melt for its deoxidation-alloying (refining), homogenization, and heating by a submerged electric arc is proposed. This technology eliminates the use of expensive reagents, ferroalloys, and alloying elements. Based on the conducted research, a scheme of the processes of submerged arc reduction of elements was established, the design of submerged arc furnace assemblies and their composition were proposed, and the high efficiency of the new method of ladle refining in comparison with conventional analogs was demonstrated.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 4","pages":"615 - 622"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01765-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The ladle refining of iron-carbon melts is an essential component of the modern technology used in the production of iron and steel, ensuring the high quality of metal products. However, in the context of mini- and micro-factories using technological units of a limited volume, it is often unfeasible to implement modern, highly efficient refining, deoxidation-alloying, and heating schemes that are commonly used by ladle furnaces and degassers. In addition, the issue of the widespread use of various production wastes for the production of cast iron and steel in order to recycle them and reduce the consumption of conventional charge materials is relevant. Therefore, a new method of submerged arc reduction of elements useful for metallurgy from industrial waste and secondary materials directly into an iron-carbon melt for its deoxidation-alloying (refining), homogenization, and heating by a submerged electric arc is proposed. This technology eliminates the use of expensive reagents, ferroalloys, and alloying elements. Based on the conducted research, a scheme of the processes of submerged arc reduction of elements was established, the design of submerged arc furnace assemblies and their composition were proposed, and the high efficiency of the new method of ladle refining in comparison with conventional analogs was demonstrated.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).