{"title":"Nano-armored Wheat: Enhancing Heat Stress Resilience and Yield via Zinc–Salicylic Acid–Chitosan Bionanoconjugates","authors":"Narender Mohan, Ajay Pal, Vinod Saharan","doi":"10.1007/s10924-024-03383-6","DOIUrl":null,"url":null,"abstract":"<div><p>After the application of Zn–SA–chitosan bionanoconjugates (BNCs), the physio-biochemical responses of two wheat varieties WH-1124 (heat resistant) and WH-542 (heat sensitive) under terminal heat stress(THS) were assessed in the current study. Zn (Zinc) and SA (Salicylic acid) were slowly released by BNCs to maintain nutrient availability for plants.Application of BNCs enhanced wheat production by enhancing seedling emergence, seed vigour index, and cellular redox homeostasis through antioxidant status regulation, enhanced photosynthetic rate, and cellular and osmotic stability which are essential for stress resistance and plant growth. BNCs (0.01–0.16% w/v) administration at booting and anthesis stages fabricated cellular homeostasis by reducing oxidative damage by suppressing malondialdehyde (MDA), and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) restoring proline, and its metabolizing enzymes in flag leaf. Comparing control plants treated with, BNCs (0.08%) considerably slowed the loss of carotenoid and chlorophyll levels in both wheat cultivars. Furthermore, foliar treatment of BNCs boosted the activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase in both flag leaf and developing grains on exposure of late sown wheat to THS. BNCs (0.08%) not only promoted early maturity but also significantly slowed the plant height reduction from 12.6% in the control group to just 8.7%. Similarly, the reduction in spike length with awns, and grain yield per pot was controlled to just 5.5% from 7.9% in control.Early emergence, vigorous germination, and early flowering by BNCs synergistically helped the wheat plant in mitigating THS and giving better productivity by providing enough time for grain filling.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6725 - 6741"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03383-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
After the application of Zn–SA–chitosan bionanoconjugates (BNCs), the physio-biochemical responses of two wheat varieties WH-1124 (heat resistant) and WH-542 (heat sensitive) under terminal heat stress(THS) were assessed in the current study. Zn (Zinc) and SA (Salicylic acid) were slowly released by BNCs to maintain nutrient availability for plants.Application of BNCs enhanced wheat production by enhancing seedling emergence, seed vigour index, and cellular redox homeostasis through antioxidant status regulation, enhanced photosynthetic rate, and cellular and osmotic stability which are essential for stress resistance and plant growth. BNCs (0.01–0.16% w/v) administration at booting and anthesis stages fabricated cellular homeostasis by reducing oxidative damage by suppressing malondialdehyde (MDA), and hydrogen peroxide (H2O2) restoring proline, and its metabolizing enzymes in flag leaf. Comparing control plants treated with, BNCs (0.08%) considerably slowed the loss of carotenoid and chlorophyll levels in both wheat cultivars. Furthermore, foliar treatment of BNCs boosted the activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase in both flag leaf and developing grains on exposure of late sown wheat to THS. BNCs (0.08%) not only promoted early maturity but also significantly slowed the plant height reduction from 12.6% in the control group to just 8.7%. Similarly, the reduction in spike length with awns, and grain yield per pot was controlled to just 5.5% from 7.9% in control.Early emergence, vigorous germination, and early flowering by BNCs synergistically helped the wheat plant in mitigating THS and giving better productivity by providing enough time for grain filling.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.