{"title":"Effect of tannic acid chelating treatment on thermo-oxidative aging property of natural rubber","authors":"Chuanyu Wei, Tingting Zheng, Yuhang Luo, Changjin Yang, Yanchan Wei, Shuangquan Liao","doi":"10.1515/epoly-2024-0036","DOIUrl":null,"url":null,"abstract":"Metal ions are crucial in the production and preservation of fresh natural rubber latex. However, they also catalyze the thermo-oxidative aging of rubber products, leading to premature product degradation. This study investigates the use of tannic acid (TA) to chelate metal ions, thereby enhancing the thermo-oxidative aging resistance of natural rubber (NR). The findings indicate that NR treated with a 1.5 g·L<jats:sup>−1</jats:sup> TA solution exhibits superior tensile strength, elongation at break, and crosslink density post-thermo-oxidative aging compared to untreated samples. Analysis of ultraviolet–visible absorption spectra, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy confirms that TA’s resistance to thermo-oxidative aging stems from its ability to form stable chelates with metal ions, reducing their catalytic activity and mitigating oxidative degradation. Consequently, TA chelation treatment is proposed as an effective method to enhance the thermo-oxidative aging resistance of NR.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2024-0036","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Metal ions are crucial in the production and preservation of fresh natural rubber latex. However, they also catalyze the thermo-oxidative aging of rubber products, leading to premature product degradation. This study investigates the use of tannic acid (TA) to chelate metal ions, thereby enhancing the thermo-oxidative aging resistance of natural rubber (NR). The findings indicate that NR treated with a 1.5 g·L−1 TA solution exhibits superior tensile strength, elongation at break, and crosslink density post-thermo-oxidative aging compared to untreated samples. Analysis of ultraviolet–visible absorption spectra, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy confirms that TA’s resistance to thermo-oxidative aging stems from its ability to form stable chelates with metal ions, reducing their catalytic activity and mitigating oxidative degradation. Consequently, TA chelation treatment is proposed as an effective method to enhance the thermo-oxidative aging resistance of NR.
金属离子对新鲜天然胶乳的生产和保存至关重要。然而,它们也会催化橡胶制品的热氧化老化,导致产品过早降解。本研究调查了单宁酸(TA)对金属离子的螯合作用,从而提高天然橡胶(NR)的耐热氧化老化性。研究结果表明,使用 1.5 g-L-1 TA 溶液处理的天然橡胶在热氧化老化后的拉伸强度、断裂伸长率和交联密度均优于未处理的样品。对紫外可见吸收光谱、傅立叶变换红外光谱和 X 射线光电子能谱的分析证实,TA 的抗热氧化老化能力源于它能与金属离子形成稳定的螯合物,从而降低金属离子的催化活性并减轻氧化降解。因此,TA 螯合处理被认为是提高 NR 耐热氧化老化性的一种有效方法。
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.