Photonic Crystals with an Arbitrary Number of Photonic Band Gaps Made of Porous Quartz with a Gradual Change in the Refractive Index

IF 0.8 4区 物理与天体物理 Q4 OPTICS
S. E. Svyakhovskiy, N. I. Pyshkov
{"title":"Photonic Crystals with an Arbitrary Number of Photonic Band Gaps Made of Porous Quartz with a Gradual Change in the Refractive Index","authors":"S. E. Svyakhovskiy,&nbsp;N. I. Pyshkov","doi":"10.1134/S0030400X24040167","DOIUrl":null,"url":null,"abstract":"<p>One-dimensional photonic crystals with an arbitrary number and spectral position of photonic band gaps in the optical spectral range are experimentally demonstrated. The absence of mutual influence of the photonic band gaps was shown. No features corresponding to higher harmonics or combination frequencies were found in the spectral response of the multifrequency photonic crystals created.</p>","PeriodicalId":723,"journal":{"name":"Optics and Spectroscopy","volume":"132 4","pages":"416 - 420"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0030400X24040167","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

One-dimensional photonic crystals with an arbitrary number and spectral position of photonic band gaps in the optical spectral range are experimentally demonstrated. The absence of mutual influence of the photonic band gaps was shown. No features corresponding to higher harmonics or combination frequencies were found in the spectral response of the multifrequency photonic crystals created.

Abstract Image

Abstract Image

由折射率渐变的多孔石英制成的具有任意数量光子带隙的光子晶体
摘要 实验证明了一维光子晶体在光学光谱范围内具有任意数量和光谱位置的光子带隙。实验表明,光子带隙之间不存在相互影响。在所创建的多频光子晶体的光谱响应中,没有发现与高次谐波或组合频率相对应的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Spectroscopy
Optics and Spectroscopy 物理-光谱学
CiteScore
1.60
自引率
0.00%
发文量
55
审稿时长
4.5 months
期刊介绍: Optics and Spectroscopy (Optika i spektroskopiya), founded in 1956, presents original and review papers in various fields of modern optics and spectroscopy in the entire wavelength range from radio waves to X-rays. Topics covered include problems of theoretical and experimental spectroscopy of atoms, molecules, and condensed state, lasers and the interaction of laser radiation with matter, physical and geometrical optics, holography, and physical principles of optical instrument making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信