Vertex Imaging Hadron Calorimetry Using AI/ML Tools

N. Akchurin, J. Cash, J. Damgov, X. Delashaw, K. Lamichhane, M. Harris, M. Kelley, S. Kunori, H. Mergate-Cacace, T. Peltola, O. Schneider, J. Sewell
{"title":"Vertex Imaging Hadron Calorimetry Using AI/ML Tools","authors":"N. Akchurin, J. Cash, J. Damgov, X. Delashaw, K. Lamichhane, M. Harris, M. Kelley, S. Kunori, H. Mergate-Cacace, T. Peltola, O. Schneider, J. Sewell","doi":"arxiv-2408.15385","DOIUrl":null,"url":null,"abstract":"The fluctuations in energy loss to processes that do not generate measurable\nsignals, such as binding energy losses, set the limit on achievable hadronic\nenergy resolution in traditional energy reconstruction techniques. The\ncorrelation between the number of hadronic interaction vertices in a shower and\ninvisible energy is found to be strong and is used to estimate invisible energy\nfraction in highly granular calorimeters in short time intervals (<10 ns). We\nsimulated images of hadronic showers using GEANT4 and deployed a neural network\nto analyze the images for energy regression. The neural network-based approach\nresults in significant improvement in energy resolution, from 13 % to 4 % in\nthe case of a Cherenkov calorimeter for 100 GeV pion showers. We discuss the\nsignificance of the phenomena responsible for this improvement and the plans\nfor experimental verification of these results and further development.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fluctuations in energy loss to processes that do not generate measurable signals, such as binding energy losses, set the limit on achievable hadronic energy resolution in traditional energy reconstruction techniques. The correlation between the number of hadronic interaction vertices in a shower and invisible energy is found to be strong and is used to estimate invisible energy fraction in highly granular calorimeters in short time intervals (<10 ns). We simulated images of hadronic showers using GEANT4 and deployed a neural network to analyze the images for energy regression. The neural network-based approach results in significant improvement in energy resolution, from 13 % to 4 % in the case of a Cherenkov calorimeter for 100 GeV pion showers. We discuss the significance of the phenomena responsible for this improvement and the plans for experimental verification of these results and further development.
使用 AI/ML 工具的顶点成像强子量热法
能量损失的波动过程不会产生可测量的信号,例如结合能损失,这就限制了传统能量重建技术可实现的强子能量分辨率。研究发现,簇射中强子相互作用顶点的数量与隐形能量之间的相关性很强,可用于在短时间间隔(<10 毫微秒)内估算高颗粒量热计中的隐形能量比例。我们使用 GEANT4 模拟了强子阵列的图像,并部署了一个神经网络来分析图像以进行能量回归。基于神经网络的方法显著提高了能量分辨率,在100 GeV先驱示波的切伦科夫量热计中从13%提高到4%。我们讨论了导致这一改进的现象的重要性,以及对这些结果进行实验验证和进一步开发的计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信