Computing virtual dark-field X-ray microscopy images of complex discrete dislocation structures from large-scale molecular dynamics simulations

Yifan Wang, Nicolas Bertin, Dayeeta Pal, Sara J. Irvine, Kento Katagiri, Robert E. Ruddc, Leora E. Dresselhaus-Marais
{"title":"Computing virtual dark-field X-ray microscopy images of complex discrete dislocation structures from large-scale molecular dynamics simulations","authors":"Yifan Wang, Nicolas Bertin, Dayeeta Pal, Sara J. Irvine, Kento Katagiri, Robert E. Ruddc, Leora E. Dresselhaus-Marais","doi":"arxiv-2409.01439","DOIUrl":null,"url":null,"abstract":"Dark-field X-ray Microscopy (DFXM) is a novel diffraction-based imaging\ntechnique that non-destructively maps the local deformation from crystalline\ndefects in bulk materials. While studies have demonstrated that DFXM can\nspatially map 3D defect geometries, it is still challenging to interpret DFXM\nimages of the high dislocation density systems relevant to macroscopic crystal\nplasticity. This work develops a scalable forward model to calculate virtual\nDFXM images for complex discrete dislocation (DD) structures obtained from\natomistic simulations. Our new DD-DFXM model integrates a non-singular\nformulation for calculating the local strain from the DD structures and an\nefficient geometrical optics algorithm for computing the DFXM image from the\nstrain. We apply the model to complex DD structures obtained from a large-scale\nmolecular dynamics (MD) simulation of compressive loading on a single-crystal\nsilicon. Simulated DFXM images exhibit prominent feature contrast for\ndislocations between the multiple slip systems, demonstrating the DFXM's\npotential to resolve features from dislocation multiplication. The integrated\nDD-DFXM model provides a toolbox for DFXM experimental design and image\ninterpretation in the context of bulk crystal plasticity for the breadth of\nmeasurements across shock plasticity and the broader materials science\ncommunity.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dark-field X-ray Microscopy (DFXM) is a novel diffraction-based imaging technique that non-destructively maps the local deformation from crystalline defects in bulk materials. While studies have demonstrated that DFXM can spatially map 3D defect geometries, it is still challenging to interpret DFXM images of the high dislocation density systems relevant to macroscopic crystal plasticity. This work develops a scalable forward model to calculate virtual DFXM images for complex discrete dislocation (DD) structures obtained from atomistic simulations. Our new DD-DFXM model integrates a non-singular formulation for calculating the local strain from the DD structures and an efficient geometrical optics algorithm for computing the DFXM image from the strain. We apply the model to complex DD structures obtained from a large-scale molecular dynamics (MD) simulation of compressive loading on a single-crystal silicon. Simulated DFXM images exhibit prominent feature contrast for dislocations between the multiple slip systems, demonstrating the DFXM's potential to resolve features from dislocation multiplication. The integrated DD-DFXM model provides a toolbox for DFXM experimental design and image interpretation in the context of bulk crystal plasticity for the breadth of measurements across shock plasticity and the broader materials science community.
根据大规模分子动力学模拟计算复杂离散位错结构的虚拟暗场 X 射线显微镜图像
暗场 X 射线显微镜(DFXM)是一种新颖的基于衍射的成像技术,可以非破坏性地绘制块体材料中晶体缺陷的局部变形图。虽然研究表明 DFXM 可以绘制三维缺陷几何图形,但要解释与宏观晶体塑性相关的高位错密度系统的 DFXM 图像仍具有挑战性。这项研究开发了一种可扩展的前向模型,用于计算从解剖模拟中获得的复杂离散位错(DD)结构的虚拟 DFXM 图像。我们的新 DD-DFXM 模型集成了用于计算 DD 结构局部应变的非矢量公式和用于计算应变 DFXM 图像的高效几何光学算法。我们将该模型应用于大尺度分子动力学(MD)模拟单晶硅压缩载荷时获得的复杂 DD 结构。模拟的 DFXM 图像显示出多个滑移系统之间位错的突出特征对比,证明 DFXM 有能力分辨位错倍增产生的特征。集成的位错-DFXM 模型为体晶塑性背景下的 DFXM 实验设计和图像解释提供了一个工具箱,适用于冲击塑性和更广泛的材料科学领域的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信