Enhancing Sensitivity in Ge-Based Rare-Event Physics Experiments through Underground Crystal Growth and Detector Fabrication

Dongming Mei
{"title":"Enhancing Sensitivity in Ge-Based Rare-Event Physics Experiments through Underground Crystal Growth and Detector Fabrication","authors":"Dongming Mei","doi":"arxiv-2409.03580","DOIUrl":null,"url":null,"abstract":"The cosmogenic production of long-lived isotopes such as $^{3}$H,$^{55}$Fe,\n$^{60}$Co, $^{65}$Zn, and $^{68}$Ge poses a significant challenge as a source\nof background events in Ge-based dark matter (DM) and neutrinoless double-beta\ndecay ($0\\nu\\beta\\beta$) experiments. In the pursuit of DM, particularly within\nthe largely unexplored parameter space for low-mass DM, new detector\ntechnologies are being developed with extremely low-energy thresholds to detect\nMeV-scale DM. However, isotopes like $^{3}$H, $^{55}$Fe, $^{65}$Zn, and\n$^{68}$Ge, produced cosmogenically within the detector material, emerge as\ndominant backgrounds that severely limit sensitivity in these searches.\nSimilarly, efforts to detect $0\\nu\\beta\\beta$, especially under a neutrino\nnormal mass hierarchy scenario, require a sensitivity to the effective Majorana\nmass of $\\sim$1 meV. Achieving this level of sensitivity necessitates stringent\nsuppression of background signals from isotopes such as $^{60}$Co and\n$^{68}$Ge, which impose critical detection limits. To reach the targeted\nsensitivity for these next-generation experiments and to unlock their full\ndiscovery potential for both low-mass DM and $0\\nu\\beta\\beta$, relocating Ge\ncrystal growth and detector fabrication to underground environments is crucial.\nThis approach is the most effective strategy to significantly reduce the\nproduction of these long-lived isotopes, thereby ensuring the experimental\nsensitivity required for groundbreaking discoveries.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cosmogenic production of long-lived isotopes such as $^{3}$H,$^{55}$Fe, $^{60}$Co, $^{65}$Zn, and $^{68}$Ge poses a significant challenge as a source of background events in Ge-based dark matter (DM) and neutrinoless double-beta decay ($0\nu\beta\beta$) experiments. In the pursuit of DM, particularly within the largely unexplored parameter space for low-mass DM, new detector technologies are being developed with extremely low-energy thresholds to detect MeV-scale DM. However, isotopes like $^{3}$H, $^{55}$Fe, $^{65}$Zn, and $^{68}$Ge, produced cosmogenically within the detector material, emerge as dominant backgrounds that severely limit sensitivity in these searches. Similarly, efforts to detect $0\nu\beta\beta$, especially under a neutrino normal mass hierarchy scenario, require a sensitivity to the effective Majorana mass of $\sim$1 meV. Achieving this level of sensitivity necessitates stringent suppression of background signals from isotopes such as $^{60}$Co and $^{68}$Ge, which impose critical detection limits. To reach the targeted sensitivity for these next-generation experiments and to unlock their full discovery potential for both low-mass DM and $0\nu\beta\beta$, relocating Ge crystal growth and detector fabrication to underground environments is crucial. This approach is the most effective strategy to significantly reduce the production of these long-lived isotopes, thereby ensuring the experimental sensitivity required for groundbreaking discoveries.
通过地下晶体生长和探测器制造提高 Ge 基稀有事件物理实验的灵敏度
宇宙生成的长寿命同位素,如$^{3}$H、$^{55}$Fe、$^{60}$Co、$^{65}$Zn和$^{68}$Ge,作为基于Ge的暗物质(DM)和无中微子双衰减($0\nu\beta\beta$)实验的背景事件源,构成了一项重大挑战。在探索暗物质的过程中,特别是在基本未探索的低质量暗物质参数空间内,正在开发具有极低能量阈值的新探测技术,以探测MeV尺度的暗物质。然而,像$^{3}$H、$^{55}$Fe、$^{65}$Zn和$^{68}$Ge这样的同位素是在探测器材料内部宇宙生成的,它们作为主要背景出现,严重限制了这些搜索的灵敏度。要达到这一灵敏度水平,就必须严格抑制来自^{60}$钴和$^{68}$锗等同位素的背景信号,因为它们会造成临界探测极限。为了达到这些下一代实验的目标灵敏度,并充分释放其发现低质量DM和$0\nu\beta\beta$的潜力,将晶体生长和探测器制造转移到地下环境是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信