Development of ion-beam sputtered silicon nitride thin films for low-noise mirror coatings of gravitational-wave detectors

A. Amato, M. Bazzan, G. Cagnoli, M. Canepa, M. Coulon, J. Degallaix, N. Demos, M. Evans, F. Fabrizi, G. Favaro, D. Forest, S. Gras, D. Hofman, A. Lemaitre, G. Maggioni, M. Magnozzi, V. Martinez, L. Mereni, C. Michel, V. Milotti, M. Montani, A. Paolone, A. Pereira, F. Piergiovanni, V. Pierro, L. Pinard, I. M. Pinto, E. Placidi, S. Samandari, B. Sassolas, N. Shcheblanov, J. Teillon, I. Vickridge, M. Granata
{"title":"Development of ion-beam sputtered silicon nitride thin films for low-noise mirror coatings of gravitational-wave detectors","authors":"A. Amato, M. Bazzan, G. Cagnoli, M. Canepa, M. Coulon, J. Degallaix, N. Demos, M. Evans, F. Fabrizi, G. Favaro, D. Forest, S. Gras, D. Hofman, A. Lemaitre, G. Maggioni, M. Magnozzi, V. Martinez, L. Mereni, C. Michel, V. Milotti, M. Montani, A. Paolone, A. Pereira, F. Piergiovanni, V. Pierro, L. Pinard, I. M. Pinto, E. Placidi, S. Samandari, B. Sassolas, N. Shcheblanov, J. Teillon, I. Vickridge, M. Granata","doi":"arxiv-2409.07147","DOIUrl":null,"url":null,"abstract":"Brownian thermal noise of thin-film coatings is a fundamental limit for\nhigh-precision experiments based on optical resonators such as\ngravitational-wave interferometers. Here we present the results of a research\nactivity aiming to develop lower-noise ion-beam sputtered silicon nitride thin\nfilms compliant with the very stringent requirements on optical loss of\ngravitational-wave interferometers. In order to test the hypothesis of a correlation between the synthesis\nconditions of the films and their elemental composition and optical and\nmechanical properties, we varied the voltage, current intensity and composition\nof the sputtering ion beam, and we performed a broad campaign of\ncharacterizations. While the refractive index was found to monotonically depend\non the beam voltage and linearly vary with the N/Si ratio, the optical\nabsorption appeared to be strongly sensitive to other factors, as yet\nunidentified. However, by systematically varying the deposition parameters, an\noptimal working point was found. Thus we show that the loss angle and\nextinction coefficient of our thin films can be as low as $(1.0 \\pm 0.1) \\times\n10^{-4}$ rad at $\\sim$2.8 kHz and $(6.4 \\pm 0.2) \\times 10^{-6}$ at 1064 nm,\nrespectively, after thermal treatment at 900 $^{\\circ}$C. Such loss angle value\nis the lowest ever measured on this class of thin films. We then used our silicon nitride thin films to design and produce a\nmulti-material mirror coating showing a thermal noise amplitude of $(10.3 \\pm\n0.2) \\times 10^{-18}$ m Hz$^{-1/2}$ at 100 Hz, which is 25\\% lower than in\ncurrent mirror coatings of the Advanced LIGO and Advanced Virgo\ninterferometers, and an optical absorption as low as $(1.9 \\pm 0.2)$ parts per\nmillion at 1064 nm.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brownian thermal noise of thin-film coatings is a fundamental limit for high-precision experiments based on optical resonators such as gravitational-wave interferometers. Here we present the results of a research activity aiming to develop lower-noise ion-beam sputtered silicon nitride thin films compliant with the very stringent requirements on optical loss of gravitational-wave interferometers. In order to test the hypothesis of a correlation between the synthesis conditions of the films and their elemental composition and optical and mechanical properties, we varied the voltage, current intensity and composition of the sputtering ion beam, and we performed a broad campaign of characterizations. While the refractive index was found to monotonically depend on the beam voltage and linearly vary with the N/Si ratio, the optical absorption appeared to be strongly sensitive to other factors, as yet unidentified. However, by systematically varying the deposition parameters, an optimal working point was found. Thus we show that the loss angle and extinction coefficient of our thin films can be as low as $(1.0 \pm 0.1) \times 10^{-4}$ rad at $\sim$2.8 kHz and $(6.4 \pm 0.2) \times 10^{-6}$ at 1064 nm, respectively, after thermal treatment at 900 $^{\circ}$C. Such loss angle value is the lowest ever measured on this class of thin films. We then used our silicon nitride thin films to design and produce a multi-material mirror coating showing a thermal noise amplitude of $(10.3 \pm 0.2) \times 10^{-18}$ m Hz$^{-1/2}$ at 100 Hz, which is 25\% lower than in current mirror coatings of the Advanced LIGO and Advanced Virgo interferometers, and an optical absorption as low as $(1.9 \pm 0.2)$ parts per million at 1064 nm.
开发用于引力波探测器低噪声镜面涂层的离子束溅射氮化硅薄膜
薄膜涂层的布朗热噪声是基于重力波干涉仪等光学谐振器的高精度实验的基本限制。在此,我们介绍了一项研究活动的成果,该活动旨在开发符合对引力波干涉仪光学损耗的严格要求的低噪声离子束溅射氮化硅薄膜。为了验证薄膜的合成条件及其元素组成与光学和机械特性之间的相关性,我们改变了溅射离子束的电压、电流强度和组成,并进行了广泛的表征。虽然折射率与离子束电压成单调关系,并与 N/Si 比率成线性关系,但光学吸收似乎对其他尚未确定的因素非常敏感。然而,通过系统地改变沉积参数,我们找到了一个最佳工作点。因此,我们的研究表明,在 900 $^{\circ}$C 下进行热处理后,我们的薄膜在 2.8 kHz 时的损耗角和消光系数分别可低至 $(1.0 \pm 0.1) \times10^{-4}$ rad 和在 1064 nm 时的 $(6.4 \pm 0.2) \times 10^{-6}$。这样的损耗角值是在这类薄膜上测得的最低值。然后,我们利用氮化硅薄膜设计并制作了一种多材料镜面涂层,在100赫兹时的热噪声振幅为(10.3 \pm0.2) \times 10^{-18}$ m Hz$^{-1/2}$,比目前先进LIGO和先进室女座干涉仪的镜面涂层低25%,在1064纳米时的光吸收低至(1.9 \pm 0.2)$百万分之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信