Effect of Solutionization and Deformation on Microstructural Evolution and Mechanical/Electrical Properties of Al–Mg–Si Alloy with Er + Sc Co‐Addition

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bao‐an Chen, Rui Chen, Menglin Li, Ruihong Wang, Yu Han, Zhixiang Zhu, Jianhua Dong, Yiting Huang, Changlong Yang, Shengyu Jiang
{"title":"Effect of Solutionization and Deformation on Microstructural Evolution and Mechanical/Electrical Properties of Al–Mg–Si Alloy with Er + Sc Co‐Addition","authors":"Bao‐an Chen, Rui Chen, Menglin Li, Ruihong Wang, Yu Han, Zhixiang Zhu, Jianhua Dong, Yiting Huang, Changlong Yang, Shengyu Jiang","doi":"10.1002/adem.202400847","DOIUrl":null,"url":null,"abstract":"Effect of solutionization (two‐step vs one‐step solution treatment) and deformation (one‐step solutionization + deformation vs no deformation) on microstructural evolution and mechanical/electrical properties of an aged Al–Mg–Si alloy with microalloying Er + Sc co‐addition is studied, respectively, in comparison with its counterpart with a single Sc addition at the same total addition content. Experimental results showed that the Er + Sc co‐added Al–Mg–Si alloy displayed a combination of aging hardness and electrical conductivity superior to the single Sc‐added alloy, under either two‐step or one‐step solution treatment. This highlights an effective microalloying way to improve the Al–Mg–Si alloy by partially using cheap Er rather than full addition of expensive Sc. While the introduction of deformation yielded to a higher aging hardness but a lower electrical conductivity in the Er + Sc co‐added alloy apparently than in the single Sc‐added alloy. When comparing among the Er + Sc co‐added alloys, it is found that, although the one‐step solutionization leads to the highest aging hardness (≈102 HV in peak aging) and the deformation introduction results in the highest electrical conductivity (up to 57.3% IACS), the two‐step solutionization brought about the best combination of aging hardness (≈87 HV) and electrical conductivity (up to 56.7% IACS). Microstructural evolution under different treatments is analyzed to rationalize the variation in aging hardness and electrical conductivity especially in the Er + Sc co‐added Al–Mg–Si alloy.","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adem.202400847","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Effect of solutionization (two‐step vs one‐step solution treatment) and deformation (one‐step solutionization + deformation vs no deformation) on microstructural evolution and mechanical/electrical properties of an aged Al–Mg–Si alloy with microalloying Er + Sc co‐addition is studied, respectively, in comparison with its counterpart with a single Sc addition at the same total addition content. Experimental results showed that the Er + Sc co‐added Al–Mg–Si alloy displayed a combination of aging hardness and electrical conductivity superior to the single Sc‐added alloy, under either two‐step or one‐step solution treatment. This highlights an effective microalloying way to improve the Al–Mg–Si alloy by partially using cheap Er rather than full addition of expensive Sc. While the introduction of deformation yielded to a higher aging hardness but a lower electrical conductivity in the Er + Sc co‐added alloy apparently than in the single Sc‐added alloy. When comparing among the Er + Sc co‐added alloys, it is found that, although the one‐step solutionization leads to the highest aging hardness (≈102 HV in peak aging) and the deformation introduction results in the highest electrical conductivity (up to 57.3% IACS), the two‐step solutionization brought about the best combination of aging hardness (≈87 HV) and electrical conductivity (up to 56.7% IACS). Microstructural evolution under different treatments is analyzed to rationalize the variation in aging hardness and electrical conductivity especially in the Er + Sc co‐added Al–Mg–Si alloy.

Abstract Image

溶解和变形对共添加 Er + Sc 的 Al-Mg-Si 合金微观结构演变和机械/电气性能的影响
分别研究了固溶(两步固溶处理与一步固溶处理)和变形(一步固溶 + 变形与不变形)对添加了微合金化 Er + Sc 的老化 Al-Mg-Si 合金的微观结构演变和机械/电性能的影响,并与总添加量相同的单添加 Sc 的合金进行了比较。实验结果表明,无论是两步还是一步固溶处理,共添加 Er + Sc 的 Al-Mg-Si 合金在时效硬度和导电性方面都优于单一添加 Sc 的合金。这表明,通过部分使用廉价的 Er 而不是全部添加昂贵的 Sc,是改进 Al-Mg-Si 合金的一种有效微合金化方法。与单一添加 Sc 的合金相比,添加 Er + Sc 的合金在引入形变后可获得更高的时效硬度,但导电率却更低。在对 Er + Sc 共加合金进行比较时发现,虽然一步固溶会导致最高的时效硬度(峰值时效≈102 HV),引入形变会导致最高的导电率(达 57.3% IACS),但两步固溶会带来时效硬度(≈87 HV)和导电率(达 56.7% IACS)的最佳组合。通过分析不同处理过程中的微观结构演变,可以合理解释老化硬度和导电率的变化,尤其是在 Er + Sc 共加 Al-Mg-Si 合金中的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信