{"title":"State Observer Synchronization of Three-Dimensional Chaotic Oscillatory Systems Based on DNA Strand Displacement","authors":"Zicheng Wang;Haojie Wang;Yanfeng Wang;Junwei Sun","doi":"10.1109/TNB.2024.3457755","DOIUrl":null,"url":null,"abstract":"Currently, DNA strand displacement (DSD) as the theoretical basis of DNA chemical reaction networks (CRNs) has promoted the development of chaotic synchronization technique. This paper introduces the synchronization technology of two isomorphic three-dimensional chaotic systems based on DNA strand displacement under state observer. By studying the theoretical knowledge of DNA molecules, multiple DSD reactions are used to construct three-dimensional chaotic system. Based on two isomorphic chaotic systems, the linear transformation system and the state observer system are designed according to the theory of state observer construction. In addition, in order to realize the synchronization of chaotic systems, a coupling controller is designed between the drive system and the linear transformation system, and a soft variable-structure controller is designed between the state observer system and the response system. Through multiple DSD reactions, the chemical reaction networks of four chaotic systems and two controllers are constructed, and they are cascaded to realize the synchronization of two isomorphic three-dimensional chaotic systems. Numerical simulations verify the effectiveness and robustness of the scheme. Our work will extend and provide a reference for new methods to achieve synchronization of chaotic systems using DSD.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"145-156"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10677516/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, DNA strand displacement (DSD) as the theoretical basis of DNA chemical reaction networks (CRNs) has promoted the development of chaotic synchronization technique. This paper introduces the synchronization technology of two isomorphic three-dimensional chaotic systems based on DNA strand displacement under state observer. By studying the theoretical knowledge of DNA molecules, multiple DSD reactions are used to construct three-dimensional chaotic system. Based on two isomorphic chaotic systems, the linear transformation system and the state observer system are designed according to the theory of state observer construction. In addition, in order to realize the synchronization of chaotic systems, a coupling controller is designed between the drive system and the linear transformation system, and a soft variable-structure controller is designed between the state observer system and the response system. Through multiple DSD reactions, the chemical reaction networks of four chaotic systems and two controllers are constructed, and they are cascaded to realize the synchronization of two isomorphic three-dimensional chaotic systems. Numerical simulations verify the effectiveness and robustness of the scheme. Our work will extend and provide a reference for new methods to achieve synchronization of chaotic systems using DSD.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).