Julian Helfenstein, Bruno Ringeval, Federica Tamburini, Vera L. Mulder, Daniel S. Goll, Xianjin He, Edwin Alblas, Yingping Wang, Alain Mollier, Emmanuel Frossard
{"title":"Understanding soil phosphorus cycling for sustainable development: A review","authors":"Julian Helfenstein, Bruno Ringeval, Federica Tamburini, Vera L. Mulder, Daniel S. Goll, Xianjin He, Edwin Alblas, Yingping Wang, Alain Mollier, Emmanuel Frossard","doi":"10.1016/j.oneear.2024.07.020","DOIUrl":null,"url":null,"abstract":"<p>Soil phosphorus (P) directly impacts major sustainability outcomes, namely crop yields, water quality, and carbon sequestration. Optimally managing P to improve sustainability outcomes requires a mechanistic understanding of P availability and transfer, alongside high-resolution spatial data. However, it is unclear if current measurement techniques, models, and maps meet the demands for science-informed management. Here, we review recent advances in measuring P fluxes, quantifying P availability, and mapping soil P resources and discuss implications for sustainability outcomes. We find that the understanding of soil P availability has significantly improved but that agronomical applications and climate models are still largely based on outdated concepts. Also, we find that spatial data on soil P resources are highly uncertain, limiting the usefulness of current P maps. We highlight steps to improve existing tools and emphasize that these improvements need to go hand in hand with policy and technological development to successfully address P-related sustainable development goals.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":15.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"One Earth","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.oneear.2024.07.020","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil phosphorus (P) directly impacts major sustainability outcomes, namely crop yields, water quality, and carbon sequestration. Optimally managing P to improve sustainability outcomes requires a mechanistic understanding of P availability and transfer, alongside high-resolution spatial data. However, it is unclear if current measurement techniques, models, and maps meet the demands for science-informed management. Here, we review recent advances in measuring P fluxes, quantifying P availability, and mapping soil P resources and discuss implications for sustainability outcomes. We find that the understanding of soil P availability has significantly improved but that agronomical applications and climate models are still largely based on outdated concepts. Also, we find that spatial data on soil P resources are highly uncertain, limiting the usefulness of current P maps. We highlight steps to improve existing tools and emphasize that these improvements need to go hand in hand with policy and technological development to successfully address P-related sustainable development goals.
One EarthEnvironmental Science-Environmental Science (all)
CiteScore
18.90
自引率
1.90%
发文量
159
期刊介绍:
One Earth, Cell Press' flagship sustainability journal, serves as a platform for high-quality research and perspectives that contribute to a deeper understanding and resolution of contemporary sustainability challenges. With monthly thematic issues, the journal aims to bridge gaps between natural, social, and applied sciences, along with the humanities. One Earth fosters the cross-pollination of ideas, inspiring transformative research to address the complexities of sustainability.