Fabrication of Cu Particles with Porous Surface and Enhanced Sinter-Bondability between Cu Finishes by Physically In Situ Formation of Cu Nanoparticles Using Them

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Byeong Jo Han, Jong-Hyun Lee
{"title":"Fabrication of Cu Particles with Porous Surface and Enhanced Sinter-Bondability between Cu Finishes by Physically In Situ Formation of Cu Nanoparticles Using Them","authors":"Byeong Jo Han, Jong-Hyun Lee","doi":"10.1007/s12540-024-01790-x","DOIUrl":null,"url":null,"abstract":"<p>Cu particles with porous surface are fabricated and used as the paste fillers for rapid sintering. The particles are manufactured by the formation of Cu<sub>5</sub>Zn<sub>8</sub> on the surface of the Cu particles, followed by dezincification. The porous structure formed on the surface of the Cu particles collapses owing to external compression during sinter bonding and the in situ formation of Cu nanodebris, thereby enhancing the sinter-bondability. The sinter bonding was performed under 10 MPa at 300 °C in air. Higher shear strength was measured for the paste containing Cu particles with a porous surface compared to the identical sized spherical Cu particles at all bonding times. In particular, a near-full-density bondline was formed after bonding for 3 min and the shear strength increased to 15.85 MPa. When bonding was maintained for 10 min, an excellent shear strength of 20.17 MPa was obtained.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"279 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01790-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cu particles with porous surface are fabricated and used as the paste fillers for rapid sintering. The particles are manufactured by the formation of Cu5Zn8 on the surface of the Cu particles, followed by dezincification. The porous structure formed on the surface of the Cu particles collapses owing to external compression during sinter bonding and the in situ formation of Cu nanodebris, thereby enhancing the sinter-bondability. The sinter bonding was performed under 10 MPa at 300 °C in air. Higher shear strength was measured for the paste containing Cu particles with a porous surface compared to the identical sized spherical Cu particles at all bonding times. In particular, a near-full-density bondline was formed after bonding for 3 min and the shear strength increased to 15.85 MPa. When bonding was maintained for 10 min, an excellent shear strength of 20.17 MPa was obtained.

Graphical Abstract

Abstract Image

利用物理原位形成铜纳米颗粒的方法制造多孔表面铜颗粒并增强铜涂层之间的烧结结合力
制造出表面多孔的铜颗粒,并将其用作快速烧结的浆状填料。这种颗粒是通过在铜颗粒表面形成 Cu5Zn8,然后进行脱锌处理而制成的。在烧结结合过程中,铜颗粒表面形成的多孔结构会因外部挤压而塌陷,并在原位形成铜纳米碎屑,从而提高了烧结结合能力。烧结结合是在 300 °C 的空气中,在 10 兆帕的压力下进行的。与相同大小的球形铜颗粒相比,含有多孔表面铜颗粒的浆料在所有粘结时间内都能测得更高的剪切强度。尤其是在粘结 3 分钟后,形成了接近全密度的粘结线,剪切强度增加到 15.85 兆帕。当粘合时间保持 10 分钟时,获得了 20.17 兆帕的出色剪切强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信