Role of field ionization in laser pulse evolution during interaction of long laser pulse with gaseous hydrogen atoms

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Elnaz Khalilzadeh, Amir Chakhmachi, Zohreh Dehghani
{"title":"Role of field ionization in laser pulse evolution during interaction of long laser pulse with gaseous hydrogen atoms","authors":"Elnaz Khalilzadeh, Amir Chakhmachi, Zohreh Dehghani","doi":"10.1002/ctpp.202400022","DOIUrl":null,"url":null,"abstract":"In this paper, the laser pulse evolution arising from the field ionization during the interaction of a long laser pulse with gaseous hydrogen atoms is investigated using the kinetic 1D‐3 V Particle‐In‐Cell (PIC) Smilei simulation code. After performing various simulations, it is shown that the field ionization of hydrogen atoms has a non‐negligible effect on the evolution of the laser pulse compared to the pre‐ionized plasma case. The results of our simulations show that the amount of these evolutions is strongly dependent on the parameters of the laser and initial ionization assumed. In this regard, two main mechanisms are responsible for the changes in the generated radiations and then the evolution of the laser pulse. When the average degree of ionization is weak, the backscattered Raman radiations can provide the necessary conditions for the chaotic behavior to occur and the laser pulse to evolve. When the laser and plasma pulse parameters (such as the laser pulse amplitude, hydrogen atoms density, and the rise time of pulse) are selected so that a strong space charge field is formed, the wave breaking (which happened faster due to density changes during the field ionization) is the main factor for evolutions in the laser pulse.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ctpp.202400022","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the laser pulse evolution arising from the field ionization during the interaction of a long laser pulse with gaseous hydrogen atoms is investigated using the kinetic 1D‐3 V Particle‐In‐Cell (PIC) Smilei simulation code. After performing various simulations, it is shown that the field ionization of hydrogen atoms has a non‐negligible effect on the evolution of the laser pulse compared to the pre‐ionized plasma case. The results of our simulations show that the amount of these evolutions is strongly dependent on the parameters of the laser and initial ionization assumed. In this regard, two main mechanisms are responsible for the changes in the generated radiations and then the evolution of the laser pulse. When the average degree of ionization is weak, the backscattered Raman radiations can provide the necessary conditions for the chaotic behavior to occur and the laser pulse to evolve. When the laser and plasma pulse parameters (such as the laser pulse amplitude, hydrogen atoms density, and the rise time of pulse) are selected so that a strong space charge field is formed, the wave breaking (which happened faster due to density changes during the field ionization) is the main factor for evolutions in the laser pulse.
长激光脉冲与气态氢原子相互作用时场电离在激光脉冲演化过程中的作用
本文使用动力学 1D-3 V 粒子内胞(PIC)Smilei 仿真代码研究了长激光脉冲与气态氢原子相互作用过程中场电离引起的激光脉冲演变。在进行了各种模拟后,结果表明与电离前等离子体情况相比,氢原子的场电离对激光脉冲的演化有不可忽略的影响。模拟结果表明,这些演变量与激光参数和假定的初始电离有很大关系。在这方面,有两种主要机制导致了所产生辐射的变化以及激光脉冲的演变。当平均电离程度较弱时,后向散射拉曼辐射可为混沌行为的发生和激光脉冲的演变提供必要条件。当激光和等离子体脉冲参数(如激光脉冲振幅、氢原子密度和脉冲上升时间)的选择使空间电荷场形成较强时,波的破碎(由于场电离过程中的密度变化而发生得较快)是激光脉冲演变的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信