Oussama Baitiche, Fathi Bendelala, Ali Cheknane, Filippo Costa, Hikmat S. Hilal, Jean-Michel Nunzi, Khadidja Younes
{"title":"Plasmonic Metamaterial’s Light Trapping Enhancement of Ultrathin PbS-CQD Solar Thermal PV Cells","authors":"Oussama Baitiche, Fathi Bendelala, Ali Cheknane, Filippo Costa, Hikmat S. Hilal, Jean-Michel Nunzi, Khadidja Younes","doi":"10.1007/s11468-024-02458-3","DOIUrl":null,"url":null,"abstract":"<p>Enhancing photon absorptance in ultrathin solar/thermophotovoltaic (STPV) cells is crucial for low-cost highly efficient cells. A complete study of power conversion enhancement, in a proposed ultrathin STPV cell, is presented here. It involves lead sulfide colloidal quantum dots (PbS-CQDs), a silver (Ag)-nano-pyramid design, aluminum nitride (AlN) crossed prisms as front texturization, with embedded Ag nanospheres, and a tantalum (Ta) film as a back reflector. By combining the three mechanisms of surface plasmon polariton (SPP), localized plasmons (LSPR), and magnetic polariton (MP) in the same structure, photon absorptance in the active PbS-CQDs layer is greatly improved. The suggested structure attained a highly active absorptance of over 80%, covering visible and near-infrared (0.30–1.77 µm). The short circuit current density is also evaluated under AM 1.5 solar illumination and various blackbody temperatures (<i>T</i><sub>B</sub>), with values of 48.90 mA cm<sup>−2</sup> and 6.93 mA cm<sup>−2</sup>, respectively, corresponding to unprecedented power conversion efficiencies (PCEs) of 20.20% and 15.58%. The effects of metamaterial light management on PCE enhancement are discussed. Collectively, the findings show that the proposed hybrid cell is potentially useful in high-performance hybrid thermal and solar cells.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"107 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02458-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing photon absorptance in ultrathin solar/thermophotovoltaic (STPV) cells is crucial for low-cost highly efficient cells. A complete study of power conversion enhancement, in a proposed ultrathin STPV cell, is presented here. It involves lead sulfide colloidal quantum dots (PbS-CQDs), a silver (Ag)-nano-pyramid design, aluminum nitride (AlN) crossed prisms as front texturization, with embedded Ag nanospheres, and a tantalum (Ta) film as a back reflector. By combining the three mechanisms of surface plasmon polariton (SPP), localized plasmons (LSPR), and magnetic polariton (MP) in the same structure, photon absorptance in the active PbS-CQDs layer is greatly improved. The suggested structure attained a highly active absorptance of over 80%, covering visible and near-infrared (0.30–1.77 µm). The short circuit current density is also evaluated under AM 1.5 solar illumination and various blackbody temperatures (TB), with values of 48.90 mA cm−2 and 6.93 mA cm−2, respectively, corresponding to unprecedented power conversion efficiencies (PCEs) of 20.20% and 15.58%. The effects of metamaterial light management on PCE enhancement are discussed. Collectively, the findings show that the proposed hybrid cell is potentially useful in high-performance hybrid thermal and solar cells.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.