{"title":"Polarization-insensitive Terahertz Graphene-based Optical Switches","authors":"Jun Zhu, Jiayuan Xiong","doi":"10.1007/s11468-024-02490-3","DOIUrl":null,"url":null,"abstract":"<p>We designed a single-layer patterned graphene metasurface composed of four L-shaped graphene strips, four rectangular graphene strips, and meter-shaped graphene block. Metasurface creates dual plasmon-induced transparency (PIT) through the interaction between light and dark modes. The transmission characteristics of the structure are analyzed using the coupled mode theory and the finite element method, and the structure realizes the function of the dual-frequency optical switch. At frequencies of 3.72 THz and 6.24 THz, the optical switch modulation amplitudes are 98.04% and 95.37%, respectively, and the corresponding insertion losses are 0.16 dB and 0.08 dB respectively. In addition, the proposed structure is insensitive to changes in the polarization angle of the incident light. Under the incidence of x-polarized light and y-polarized light, the PIT effect of the two structures is consistent. This research will present a new idea for the design of terahertz multi-frequency optical switches. The optical switch has great potential for various applications such as terahertz imaging, sensors, photodetectors, and modulators.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"94 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02490-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We designed a single-layer patterned graphene metasurface composed of four L-shaped graphene strips, four rectangular graphene strips, and meter-shaped graphene block. Metasurface creates dual plasmon-induced transparency (PIT) through the interaction between light and dark modes. The transmission characteristics of the structure are analyzed using the coupled mode theory and the finite element method, and the structure realizes the function of the dual-frequency optical switch. At frequencies of 3.72 THz and 6.24 THz, the optical switch modulation amplitudes are 98.04% and 95.37%, respectively, and the corresponding insertion losses are 0.16 dB and 0.08 dB respectively. In addition, the proposed structure is insensitive to changes in the polarization angle of the incident light. Under the incidence of x-polarized light and y-polarized light, the PIT effect of the two structures is consistent. This research will present a new idea for the design of terahertz multi-frequency optical switches. The optical switch has great potential for various applications such as terahertz imaging, sensors, photodetectors, and modulators.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.