{"title":"D-Shaped Photonic Crystal Fiber Plasmonic Sensor Based on Au-Ta2O5 Composite Micro-grating","authors":"Mengqi Li, Hong Gu, Xuan Wu, Xiaotong Li","doi":"10.1007/s11468-024-02412-3","DOIUrl":null,"url":null,"abstract":"<p>A novel D-type photonic crystal fiber optical plasma sensor (PCF-SPR) based on a composite micro-grating of Au and tantalum pentoxide (Ta<sub>2</sub>O<sub>5</sub>) is proposed. The simulation and corresponding numerical characterization were performed using COMSOL Multiphysic software. In order to obtain a simple and practically feasible structure, the Au plasma material and the sensing medium were placed outside the optical fiber. A thin layer of Ta<sub>2</sub>O<sub>5</sub> is used as a coating to protect the gold layer. This composite micro-grating PCF sensor has a maximum sensitivity of 25,000 nm/RIU and sensor unit with a detection resolution of 4.0 × 10<sup>−6</sup>/RIU in the near infrared in the refractive index range of 1.34 ~ 1.41. Dependences of loss spectrum on the PCF parameters (air hole diameter and lattice constant) and the grating structure (grating thickness and width) are systematically analyzed. This sensor with grating structure is a more sensitive sensor for broad IR detection, suitable for biosensors, chemical detection, and food safety.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02412-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel D-type photonic crystal fiber optical plasma sensor (PCF-SPR) based on a composite micro-grating of Au and tantalum pentoxide (Ta2O5) is proposed. The simulation and corresponding numerical characterization were performed using COMSOL Multiphysic software. In order to obtain a simple and practically feasible structure, the Au plasma material and the sensing medium were placed outside the optical fiber. A thin layer of Ta2O5 is used as a coating to protect the gold layer. This composite micro-grating PCF sensor has a maximum sensitivity of 25,000 nm/RIU and sensor unit with a detection resolution of 4.0 × 10−6/RIU in the near infrared in the refractive index range of 1.34 ~ 1.41. Dependences of loss spectrum on the PCF parameters (air hole diameter and lattice constant) and the grating structure (grating thickness and width) are systematically analyzed. This sensor with grating structure is a more sensitive sensor for broad IR detection, suitable for biosensors, chemical detection, and food safety.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.