{"title":"Terahertz Plasmonic Biosensor Leveraging Ag-Au-Graphene Heterostructures for Quantitative Hemoglobin Analysis with Machine Learning Algorithms for Performance Optimization","authors":"Jacob Wekalao, Ngaira Mandela, Costable Lefu, Obed Apochi, Calistus Wamalwa, Wesley Langat","doi":"10.1007/s11468-024-02520-0","DOIUrl":null,"url":null,"abstract":"<p>This investigation presents the design, simulation, and performance analysis of a terahertz-based biosensor for hemoglobin detection. The sensor architecture incorporates a synergistic combination of graphene, gold, and silver metasurfaces in a hierarchical resonator structure. Extensive parametric analysis was conducted to optimize the sensor's performance characteristics. The optimized sensor demonstrates high sensitivity, achieving up to 1000 GHzRIU<sup>−1</sup>, with a figure of merit of 3.289 RIU<sup>−1</sup>. Experimental results indicate effective detection of hemoglobin concentrations ranging from 10 to 40 g/L, corresponding to refractive indices between 1.34 and 1.43. Electromagnetic field distribution analysis exemplifies peak absorption at 0.65 THz. Furthermore, the sensor’s potential for binary encoding applications was evaluated with remarkable performance. Machine learning optimization, employing a decision tree regressor, demonstrates an optimal <i>R</i><sup>2</sup> score of 100% across various parameter combinations, suggesting potential for the development of accurate sensing systems. The proposed sensor design represents a significant advancement in terahertz biosensing technology, with implications for enhanced medical diagnostics and biomedical research applications.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02520-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation presents the design, simulation, and performance analysis of a terahertz-based biosensor for hemoglobin detection. The sensor architecture incorporates a synergistic combination of graphene, gold, and silver metasurfaces in a hierarchical resonator structure. Extensive parametric analysis was conducted to optimize the sensor's performance characteristics. The optimized sensor demonstrates high sensitivity, achieving up to 1000 GHzRIU−1, with a figure of merit of 3.289 RIU−1. Experimental results indicate effective detection of hemoglobin concentrations ranging from 10 to 40 g/L, corresponding to refractive indices between 1.34 and 1.43. Electromagnetic field distribution analysis exemplifies peak absorption at 0.65 THz. Furthermore, the sensor’s potential for binary encoding applications was evaluated with remarkable performance. Machine learning optimization, employing a decision tree regressor, demonstrates an optimal R2 score of 100% across various parameter combinations, suggesting potential for the development of accurate sensing systems. The proposed sensor design represents a significant advancement in terahertz biosensing technology, with implications for enhanced medical diagnostics and biomedical research applications.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.